字节跳动大语言模型AI搜索Agent算法工程师-Top Seed
任职要求
1、2026届获得博士学位,计算机、软件工程等相关专业优先; 2、熟悉PyTorch/TensorFlow等框架,对大规模语言模型(如GPT、LLaMA等)训练与优化经验; 3、熟悉检索增强生成(RAG)、Agent架构、搜索算法(如倒排索引、语义检索)等技术或熟悉Prompt Engineering、微调对齐技术,对搜索场景的Query理解与结果生成有深入理解; 4、有高性能计算(HPC)经验,熟悉分布式训练、模型压缩与推理加速技术; 5、加分项:在ACL/EMNLP/NeurIPS等顶会发表LLM或搜索相关论文;有开源项目(如LangChain、AutoGPT)贡献或独立AI Agent开发经验;熟悉多模态模型(如GPT-4V)或强化学习(RL)者优先。
工作职责
团队介绍:字节跳动 Seed 团队成立于 2023 年,致力于寻找通用智能的新方法,追求智能上限。团队研究方向涵盖 LLM、语音、视觉、世界模型、基础架构、AI Infra、下一代 AI 交互等,在中国、新加坡、美国等地设有实验室和岗位。 Seed 团队在 AI 领域拥有长期愿景与决心,坚持深耕基础,期望成为世界一流的 AI 研究团队,为科技和社会发展作出贡献。目前团队已推出业界领先的通用大模型以及前沿的多模态能力,支持豆包、扣子、即梦等超过 50 个应用场景。 团队涉及以下方向: 1、AI搜索总结Agent研发: 1)设计并实现基于LLM的搜索总结Agent,提升搜索结果的理解、推理与结构化总结能力; 2)探索LLM Reasoning技术(如思维链、多步推理),优化复杂查询的Deep Research模式,实现长文本理解与跨文档信息融合; 3)构建端到端系统,涵盖意图识别、知识检索、结果生成与偏好对齐,提升用户体验; 2、模型优化及应用: 1)通过指令微调(Instruction Tuning)、偏好对齐(RLHF/DPO)等技术优化模型在搜索场景的适应性; 2)探索多模态信息(文本、代码、结构化数据)融合的搜索与生成技术; 3)研究未来生活中的创新应用场景(如个性化知识助手、自动化研究工具),探索技术边界。
团队介绍:字节跳动 Seed 团队成立于 2023 年,致力于寻找通用智能的新方法,追求智能上限。团队研究方向涵盖 LLM、语音、视觉、世界模型、基础架构、AI Infra、下一代 AI 交互等,在中国、新加坡、美国等地设有实验室和岗位。 Seed 团队在 AI 领域拥有长期愿景与决心,坚持深耕基础,期望成为世界一流的 AI 研究团队,为科技和社会发展作出贡献。目前团队已推出业界领先的通用大模型以及前沿的多模态能力,支持豆包、扣子、即梦等超过 50 个应用场景。 团队涉及以下方向: 1、AI搜索总结Agent研发: 1)设计并实现基于LLM的搜索总结Agent,提升搜索结果的理解、推理与结构化总结能力; 2)探索LLM Reasoning技术(如思维链、多步推理),优化复杂查询的Deep Research模式,实现长文本理解与跨文档信息融合; 3)构建端到端系统,涵盖意图识别、知识检索、结果生成与偏好对齐,提升用户体验; 2、模型优化及应用: 1)通过指令微调(Instruction Tuning)、偏好对齐(RLHF/DPO)等技术优化模型在搜索场景的适应性; 2)探索多模态信息(文本、代码、结构化数据)融合的搜索与生成技术; 3)研究未来生活中的创新应用场景(如个性化知识助手、自动化研究工具),探索技术边界。
1、探索搜索引擎与大模型、多模态、机器学习、强化学习等前沿技术的结合,实现搜索引擎全链路革新并进行极致的系统优化,探索提升AI搜索引擎的能力,包括不限于AI问答/AI搜、语义相关性、视频内容理解、生成创作、智能评测等; 2、构建大规模高质量数据(数据建设、数据合成等),训练和优化AI搜索模型,包括LLM post-train(SFT、RL、LongCoT、个性化对齐),回答富媒体化(图片、视频、自由画布),多模态问答(视频理解、VQA、VLM)等; 3、探索推进AI搜索前沿进展,包括智能Agent、Deep Research、Planning、工具建设和调用等。
1、发现优化大模型的简单、普适的想法,并应用到各个规模的模型中提升效果; 2、推进数据建设、指令微调、偏好对齐、继续预训练等模型优化方面的工作,提高模型质量和适应性; 3、探索复杂指令、长上下文、多轮对话下,大模型更为复杂的理解、推理和生成能力; 4、基于语言处理、内容创作、教育Tutor、角色扮演、复杂Agent、AI搜索和工具、代码助手等服务和应用优化模型效果; 5、推进大模型效果评估,尤其是复杂场景(多轮对话、开放领域)评估集建设和自动化评估能力建设; 6、深入研究和探索大模型在ToB企业服务中的更多使用场景,拓展模型的应用范围,如搜索、推荐、广告、创作、客服和办公等各类场景。
1、发现优化大模型的简单、普适的想法,并应用到各个规模的模型中提升效果; 2、推进数据建设、指令微调、偏好对齐、继续预训练等模型优化方面的工作,提高模型质量和适应性; 3、探索复杂指令、长上下文、多轮对话下,大模型更为复杂的理解、推理和生成能力; 4、基于语言处理、内容创作、教育Tutor、角色扮演、复杂Agent、AI搜索和工具、代码助手等服务和应用优化模型效果; 5、推进大模型效果评估,尤其是复杂场景(多轮对话、开放领域)评估集建设和自动化评估能力建设; 6、深入研究和探索大模型在ToB企业服务中的更多使用场景,拓展模型的应用范围,如搜索、推荐、广告、创作、客服和办公等各类场景。