字节跳动机器学习编译优化工程师-Seed
任职要求
1、熟悉开源ML编译器代码(如XLA/MLIR/TVM),并有相关开发经验; 2、具有CPU/GPU下的算子Kernel开发和性能优化经验; 3、具有扎实的C/C++编程能力和数据结构和算法知识; 4、具有独立解决问题的能力,能够对业务逻辑进行合理的抽象和拆分,良好的团队合作精神。 加分项: 1、有软硬件联合设计的经验; 2、深入研究过至少一种机器学习框架(Tensorflow/PyTorch/MxNet或其他自研框架)的底层架构和机制。
工作职责
团队介绍:字节跳动豆包大模型团队(Seed)成立于 2023 年,致力于寻找通用智能的新方法,追求智能上限,并探索新的交互。团队研究方向涵盖 LLM、语音、视觉、世界模型、基础架构、AI Infra、下一代 AI 交互等,在中国、新加坡、美国等地设有实验室和岗位。 豆包大模型团队在 AI 领域拥有长期愿景与决心,坚持深耕基础,期望成为世界一流的 AI 研究团队,为科技和社会发展作出贡献。目前团队已推出业界领先的通用大模型以及前沿的多模态能力,支持豆包、扣子、即梦等超过 50 个应用场景。 1、参与AI编译器相关项目的技术方案规划,设计在离线全系统的计算图优化链路; 2、针对搜索/推荐/广告场景,优化模型训练/推理的计算图执行效率; 3、与全公司算法部门深度合作,为重点项目进行算法与系统的联合优化。
团队介绍:字节跳动 Seed 团队成立于 2023 年,致力于寻找通用智能的新方法,追求智能上限。团队研究方向涵盖 LLM、语音、视觉、世界模型、基础架构、AI Infra、下一代 AI 交互等,在中国、新加坡、美国等地设有实验室和岗位。 Seed 团队在 AI 领域拥有长期愿景与决心,坚持深耕基础,期望成为世界一流的 AI 研究团队,为科技和社会发展作出贡献。目前团队已推出业界领先的通用大模型以及前沿的多模态能力,支持豆包、扣子、即梦等超过 50 个应用场景。 1、负责超大规模机器学习系统架构的设计开发,解决系统高并发、高可靠性、高可扩展性等技术难关; 2、覆盖机器学习系统多个子方向领域的工作,包括:资源调度、分布式模型训练、数据管理、高性能计算等; 3、负责机器学习系统前瞻技术的调研和引入,比如:最新硬件架构、异构计算系统、编译优化技术、强化学习RL/Agent环境交互技术等的引入落地; 4、与算法部门深度合作,进行算法与系统的联合优化。
团队介绍:字节跳动 Seed 团队成立于 2023 年,致力于寻找通用智能的新方法,追求智能上限。团队研究方向涵盖 LLM、语音、视觉、世界模型、基础架构、AI Infra、下一代 AI 交互等,在中国、新加坡、美国等地设有实验室和岗位。 Seed 团队在 AI 领域拥有长期愿景与决心,坚持深耕基础,期望成为世界一流的 AI 研究团队,为科技和社会发展作出贡献。目前团队已推出业界领先的通用大模型以及前沿的多模态能力,支持豆包、扣子、即梦等超过 50 个应用场景。 1、负责超大规模机器学习系统架构的设计开发,解决系统高并发、高可靠性、高可扩展性等技术难关; 2、覆盖机器学习系统多个子方向领域的工作,包括:资源调度、分布式模型训练、数据管理、高性能计算等; 3、负责机器学习系统前瞻技术的调研和引入,比如:最新硬件架构、异构计算系统、编译优化技术、强化学习RL/Agent环境交互技术等的引入落地; 4、与算法部门深度合作,进行算法与系统的联合优化。
团队介绍:字节跳动 Seed 团队成立于 2023 年,致力于寻找通用智能的新方法,追求智能上限。团队研究方向涵盖 LLM、语音、视觉、世界模型、基础架构、AI Infra、下一代 AI 交互等,在中国、新加坡、美国等地设有实验室和岗位。 Seed 团队在 AI 领域拥有长期愿景与决心,坚持深耕基础,期望成为世界一流的 AI 研究团队,为科技和社会发展作出贡献。目前团队已推出业界领先的通用大模型以及前沿的多模态能力,支持豆包、扣子、即梦等超过 50 个应用场景。 1、负责超大规模机器学习系统架构的设计开发,解决系统高并发、高可靠性、高可扩展性等技术难关; 2、覆盖机器学习系统多个子方向领域的工作,包括:资源调度、分布式模型训练、数据管理、高性能计算等; 3、负责机器学习系统前瞻技术的调研和引入,比如:最新硬件架构、异构计算系统、编译优化技术、强化学习RL/Agent环境交互技术等的引入落地; 4、与算法部门深度合作,进行算法与系统的联合优化。
团队介绍:字节跳动 Seed 团队成立于 2023 年,致力于寻找通用智能的新方法,追求智能上限。团队研究方向涵盖 LLM、语音、视觉、世界模型、基础架构、AI Infra、下一代 AI 交互等,在中国、新加坡、美国等地设有实验室和岗位。 Seed 团队在 AI 领域拥有长期愿景与决心,坚持深耕基础,期望成为世界一流的 AI 研究团队,为科技和社会发展作出贡献。目前团队已推出业界领先的通用大模型以及前沿的多模态能力,支持豆包、扣子、即梦等超过 50 个应用场景。 1、负责超大规模机器学习系统架构的设计开发,解决系统高并发、高可靠性、高可扩展性等技术难关; 2、覆盖机器学习系统多个子方向领域的工作,包括:资源调度、模型训练、模型推理、数据管理、工作流编排等; 3、负责机器学习系统前瞻技术的调研和引入,比如:最新硬件架构、异构计算系统、编译优化、强化学习RL/Agent环境交互技术等的引入落地; 4、与算法部门深度合作,进行算法与系统的联合优化。