字节跳动安全攻防工程师-商业化
任职要求
1、本科及以上学历,2年以上互联网安全工作经验; 2、熟练掌握常见Web、APP安全漏洞原理及利用方式,对系统解决方案有较深入理解和落地经验; 3、熟悉Golang、Python、Java等语言生态,能独立进行白盒审计; 4、具备一定开发能力,能够将重复性的安全工作自动化; 5、有较强的学习和创新能力,有好奇心探索新方向,具备良好的团队沟通、协作能力。 加分项: 1、熟悉黑灰产攻击手法、风控对抗、排查思路、治理策略,有溯源经验者优先; 2、熟悉大数据处理和分析能力,并有从业务日志/流量中进行风险挖掘挖掘过相关业务安全风险; 3、熟悉LLM技术原理及其应用,并在漏洞治理、风险发现工作中有实战经验者。
工作职责
1、负责上线安全测试、例行安全检查、渗透测试、APP安全测试等SDLC工作; 2、负责公司商业化业务的黑灰产攻击、安全风险挖掘、响应和治理; 3、负责输出业务线漏洞、安全风险的系统解决方案,迭代安全保障能力。
团队介绍:商业信任与安全算法团队,聚焦于通过人工智能技术(包括但不限于NLP/CV/多模态/图/大模型)识别和治理问题广告内容和问题广告主,助力降低虚假宣传、不良暗示等内容发生概率,提升广告质量。该方向也是行业共同关注、长期研究的方向,在这里你可以基于平台能力及内容,深耕算法优化,为商业化各业务提供安全解决方案。 课题介绍: 背景: 智能审核业务比较复杂,随着审核技术的不断演进,各个领域面临着新的风险问题和对抗形式,这对大模型的应用提出了新的挑战。例如,在审核业务中,涉及审核规则变更、长文本、长时序、多语言、少样本和AIGC生成对抗等问题时,现有的开源大模型表现往往不尽人意。因此,针对这些挑战,我们亟需研发专门针对智能审核的大模型,以提升其在治理中的有效性和适应性。特别的,针对业务特点,我们需要探索高质量的数据自动生成、高效的MOE Embedding、Auto-prompt生成、高质量 COT输出、大模型知识蒸馏等。此外,该模型应能够满足审核业务的需求,实现高准确率的自主决策和可解释性的COT生成,显著减少误判。针对动态变化的审核规则变更,它能够通过RAG模块自动检索类似的审核案例,将复杂的审核规则变更分解为简单的原子任务,自动拆分出驳回和豁免原子任务,并自动调用相应的Tools来解决这些任务,从而建立“知道拒绝并且知道为何拒绝”的业内领先智能审核系统。最终,大模型智能审核系统的审核效果需要接近或者超过人工审核,往全机审的路线上演进。 研究方向: 智能审核多模态大模型,主要研究点包括但不限于: 1、模态融合能力:提升文本、音频、图像、视频和直播等多模态的细粒度理解能力,实现高准确率的自主决策和可解释性的COT生成; 2、Few-Shot能力:探索多语言、长时序和少样本问题,增强Few-Shot和Zero-Shot能力,针对多变的业务规则具备复杂指令和Auto-prompt生成能力; 3、攻防对抗能力:研究AIGC图像视频的判别,增强审核大模型对隐晦、抽象的生成式内容的攻防对抗能力; 4、Agent能力:具备调用RAG模块,使用Tools,和Auto-planning能力;提升大模型的动态推理和反思能力。
团队介绍:商业信任与安全算法团队,聚焦于通过人工智能技术(包括但不限于NLP/CV/多模态/图/大模型)识别和治理问题广告内容和问题广告主,助力降低虚假宣传、不良暗示等内容发生概率,提升广告质量。该方向也是行业共同关注、长期研究的方向,在这里你可以基于平台能力及内容,深耕算法优化,为商业化各业务提供安全解决方案。 课题介绍:智能审核业务比较复杂,随着审核技术的不断演进,各个领域面临着新的风险问题和对抗形式,这对大模型的应用提出了新的挑战。例如,在审核业务中,涉及审核规则变更、长文本、长时序、多语言、少样本和AIGC生成对抗等问题时,现有的开源大模型表现往往不尽人意。因此,针对这些挑战,我们亟需研发专门针对智能审核的大模型,以提升其在治理中的有效性和适应性。特别的,针对业务特点,我们需要探索高质量的数据自动生成、高效的MOE Embedding、Auto-Prompt生成、高质量 COT输出、大模型知识蒸馏等。此外,该模型应能够满足审核业务的需求,实现高准确率的自主决策和可解释性的COT生成,显著减少误判。针对动态变化的审核规则变更,它能够通过RAG模块自动检索类似的审核案例,将复杂的审核规则变更分解为简单的原子任务,自动拆分出驳回和豁免原子任务,并自动调用相应的Tools来解决这些任务,从而建立“知道拒绝并且知道为何拒绝”的业内领先智能审核系统。最终,大模型智能审核系统的审核效果需要接近或者超过人工审核,往全机审的路线上演进。 1、模态融合能力:提升文本、音频、图像、视频和直播等多模态的细粒度理解能力,实现高准确率的自主决策和可解释性的COT生成; 2、Few-Shot能力:探索多语言、长时序和少样本问题,增强Few-Shot和Zero-Shot能力,针对多变的业务规则具备复杂指令和Auto-Prompt生成能力; 3、攻防对抗能力:研究AIGC图像视频的判别,增强审核大模型对隐晦、抽象的生成式内容的攻防对抗能力; 4、Agent能力:具备调用RAG模块,使用Tools,和Auto-Planning能力;提升大模型的动态推理和反思能力。
- 负责IAST污点数据流引擎的维护和优化,以及多语言的支持。 - 建设AI for SAST(静态应用安全测试)能力建设,通过大模型解决SAST检测能力的瓶颈。 - 负责安全解决方案SDK的维护和优化,并适配大模型和Agent场景。 - 可负责以上职责中的一项或多项。