字节跳动大模型算法实习生(智能销售)-自助服务-筋斗云人才计划 (北京/上海)
任职要求
1、2026届以及以后毕业,博士在读,人工智能、大模型、NLP相关专业优先; 2、优秀的代码能力、数据结构和基础算法功底,熟练C/C++或Python,ACM/ICPC、NOI/IOI、Top Coder、Kaggle等比赛获奖者优先; 3、扎实的机器学习、NLP、RL基础和出色的探索能力,在ACL/EMNLP/NAACL/NeurIPS/ICML/ICLR等顶级会议上发表论文者优先; 4、在大模型领域或者RL领域,主导过大影响力的项目或或论文者优先; 5、出色的问题分析和解决能力,有自主探索解决方案的能力;良好的沟通协作能力,能和团队一起探索新技术,推进技术进步; 6、要有改变世界的远大抱负于决心,要有迎接挑战与困难的勇气。
工作职责
团队介绍:1、业务方向:自助业务希望建成中小商家的业务中台,电商广告、生服广告、Dou+等多条业务线,一站式解决商家问题,助力商家成长,提升商家数字化经营能力;2、技术亮点:自助技术分为智能销售、客户增长、营销活动几个方向;客户增长方向主要利用Uplift建模、因果推断、运筹优化算法、推荐算法等,通过对客户初期的行为习惯进行挖掘,探索更优的发券、选品、选素材等相关策略,提升拉新指标;智能销售方向主要通过LLM-Agent的形式,利用sft、rl等算法优化广告领域的服务能力,提升对中小客户的教育、辅导、服务等能力,进而提升长期客户消耗;营销活动方向主要服务商业化运营团队,辅助运营完成营销活动的创建与推广。 课题背景: 为了长期优化广告客户生态以及收入增长,商业化需要更大规模的做好客户拉新和客户在投放成长初期的留存,那么如何精准定位目标人群、如何更有效的利用激励手段促进客户增长、如何优化当前客户动作和投放手段,就是一个必须要长期优化的方向。 现在的增长方向主要靠传统机器学习的手段来决策激励的发放,但效果提升已经遇到瓶颈,需要探索基于RL的因果推断技术。另一方面,客户成长初期目前无法获得足够的服务与帮助,结合上广告投放本身有较高学习门槛,所以现在亟需依赖LLM技术,实现智能销售的愿景——包括智能客服、智能销售、智能投手三个阶段,最终达到全智能化的托管式服务。 课题挑战: 相比抖音C端流量数据,广告客户数据相对波动较大,观测周期长,有更多的不确定性;大语言模型在广告领域的能力依然不足,具体表现在领域知识理解不足,大量专业工具(百量级)的使用效率不高,业务回复的可解释性不够强。为了达到人工销售的水平,需要探索RL、探索reward system、探索deep research的实现、探索业务向Benchmark的范式等等;相比传统客服的问答式工作,还需要探索LLM在主动服务方向的开放命题。
1. 基座增强:探索大模型垂直领域知识高效增强方法,包括数据策略、训练策略以及scaling law友好的训练方法,打造适配实际应用所需的基座能力; 2. 多模态端到端:实现语音与文本模态的深度融合与统一建模,打造高效、轻量的端到端多模态系统,从而有助于更全面、多维度地理解语音与文本,提供更强的智能以及更智能的交互模式; 3. 深度推理:突破大模型在复杂逻辑推理、因果推断、多步决策、沟通技巧等大模型基础通用能力,提升模型解决开放式问题的能力; 4. 结合大模型,研发对话交互场景的大模型Agent,支持智能客服、销售、数据分析、C端助理等项目,通过预训练、微调、强化学习等全链路的技术实践,实现类人的理解和执行能力,提升美团服务能力和效率; 5. 不断探索技术新领域,推动技术能力的沉淀和技术氛围的建设。
团队介绍:生活服务业务依托于抖音、抖音极速版等平台,致力于促进用户与本地服务的连接。过去一年,生活服务业务开创了全新的视频种草和交易体验,让更多用户通过抖音发现线下好去处,也帮助众多本地商家拓展了新的经营阵地。我们期待你的加入,一同为亿万用户创造更美好的生活。 课题介绍:生活服务行业在数字化转型中面临效率提升和成本优化的迫切需求,传统商家依赖销售老师处理商品管理、订单咨询、营销推广等环节,存在响应速度慢、标准化程度低、人力成本高等痛点。基于大语言模型(LLM)的对话系统具备自然语言理解、多任务处理、知识推理等能力,可以为商家提供智能客服、流程自动化、数据分析等场景的解决方案。然而,现有通用模型在垂直领域应用中仍存在领域知识匮乏、复杂任务执行能力不足、多模态交互受限等问题,需结合RAG、Function Calling、多模态等技术进行针对性优化。 课题挑战/必要性: 生活服务行业规则多变(如季节性促销、政策调整),需设计低延迟的领域知识库动态更新机制。另外,商家需求多样,对Agent工具调用、动态规划与异常处理能力提出了很高的要求。同时,在交互中期望能够实现语音、图像、文本等多模态信息的内容理解能力与自然交互,解决语义一致性的难题。 课题内容: 1、RAG在垂直领域的优化:构建生活服务行业知识图谱与动态检索库,研究检索增强生成中的上下文压缩技术与深度思考技术,提升答案准确性; 2、Function Calling与业务流程自动化:设计面向商家的工具库,支持自然语言指令到工具调用的精准映射,研究强化学习(RL)在工具调用领域的应用提升模型对领域外工具的识别泛化能力; 3、对话Agent的决策与协作能力:研究基于强化学习(RL)优化Agent的任务规划能力,研究多Agent协作机制; 4、多模态交互与生成:深入研究图像内容理解,开发能够与商家自然沟通的多模态交互与生成系统。
【课题说明】 传统销售模式中,销售人员通过电销系统触达商户,对商户进行营销/运营触达,整体链路人工依赖率高。随着大模型技术的快速发展,基于大模型的智能外呼在提升电销覆盖率和转化率方面展现出极大潜力。 本课题致力于将大模型技术和智能外呼任务相结合,优化美团智能外呼系统,增强其在复杂对话环境下的意图理解与灵活应对能力。力图实现更自然的语音交互、更精准的营销策略,以及更灵活的应答处理等。 【建议研究方向】 1.转化信号奖励建模:依托业务场景多轮对话的真实转化信号,构建商家画像、对话文本特征信号以及交互环境特征,预估对话的转化率,进而通过强化学习(DPO/GRPO/RLHF)引导模型营销话术生成。 2.销售领域垂类大模型:通过收集多场景销售数据以及美团广告产品知识,通过continue-Pretraining构建垂类通用销售模型基座,支持多业务场景快速支持应用。 3.Multi-Agent交互式外呼系统:通过构建任务规划、流程监督、对话营销等多个agent交互逻辑,在较低响应耗时条件下,实现最佳的电话沟通效果。
ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。 团队介绍:商业CRM与交易平台技术团队,为商业化相关的销售、运营、代理商、服务商等角色构建可靠、灵活和智能的销售运营平台,并且打造安全、合规、稳定的交易中台服务。致力于客户和伙伴从营销、销售到服务等核心链路的线上化支撑;同时打造营销经营洞察工具、自动化营销平台以及智能服务撮合等工具深度赋能用户,以提升商业化业务的销售运营效率和客户满意度。 1、负责架构设计和开发,为亿级用户提供优质顺畅的信息服务和极致体验; 2、参与设计系统技术方案,核心代码开发和系统调优; 3、参与制定代码规范、测试规范,建立起开发质量控制方法; 4、协助团队攻克各种高并发、高一致性、高扩展性、系统解耦等方面的技术难关; 5、参与各专项技术调研,新技术引入等前瞻项目; 6、参与AI/大模型相关的应用项目。