logo of bytedance

字节跳动推荐大模型算法实习生-电商业务-筋斗云人才计划

实习兼职A98756地点:上海状态:招聘

任职要求


1、2026届及以后毕业,博士在读,人工智能、计算机、数学、经济学相关专业优先;
2、具有扎实的机器学习基础和编码能力,在机器学习NLP、CV等有较深入的研究经验,熟练掌握主要的算法数据结构;
3、在搜索、广告、推荐和大模型领域,有参与或者主导过关键项目的优先;
4、在国际顶级会议发表论文者优先,包括但不限于KDD、SIGIR、RecSys、ACL、NeurIPS等;
5、具备较好的问题分析和解决能力,对技术有热情,热衷于推动和解决各种挑战。

工作职责


团队介绍:Data-电商团队,负责电商创新项目的算法和大数据工作。依托于字节跳动产品,帮助用户发现并获得好物,享受美好生活。在这个团队,我们不仅要通过推荐和搜索算法帮助用户买到感兴趣的好东西,也要通过风控算法和智能平台治理算法去甄别违规行为,保护用户的购物体验;我们还要建设智能客服技术、大规模商品知识图谱来提升各个交易环节的效率;我们也要结合机器学习和运筹算法,来优化供应链和物流的效率和成本,并进一步提升用户体验;另外我们还会用人工智能来帮助商家提升经营能力。我们的使命:没有难卖的优价好物,让美好生活触手可得。

课题介绍:
电商推荐算法是互联网商业变现的核心驱动力,目前我们有国内最大的兴趣电商分发场景以及最大的电商广告分发场景,我们希望借鉴生成式AI的成功思路,探索在电商推荐算法和架构上的颠覆性创新,解锁更大的算法效果提升空间。重点探索以下方向:
1)基于类Transformer结构的生成式推荐大模型技术,验证电商推荐场景的Scaling Law,探索面向大模型的特征工程以及算法建模范式;
2)研究电商推荐模态下的Tokenization以及COT相关算法优化;
3)算法和工程协同设计与优化,提升海量数据、超大参数背景下的训练与推理效率;
4)语言/推荐/视频等多模态模型的结合。

1、负责电商推荐及电商广告场景推荐大模型的算法优化,引入生成式AI技术,优化算法建模方法、模型结构、特征和样本等,提升电商分发效率;
2、验证推荐大模型的Scaling Law,应对大模型训练中的一切新挑战;
3、挖掘有效的用户行为,不限于Sideinfo、Action_Type等,同时研究行为聚合算法;
4、算法和工程高度融合、协同设计,极致优化推荐大模型的训练及推理效率。
包括英文材料
机器学习+
NLP+
算法+
数据结构+
大模型+
RecSys+
NeurIPS+
相关职位

logo of bytedance
实习A108597

团队介绍:Data-电商团队,负责电商创新项目的算法和大数据工作。依托于字节跳动产品,帮助用户发现并获得好物,享受美好生活。在这个团队,我们不仅要通过推荐和搜索算法帮助用户买到感兴趣的好东西,也要通过风控算法和智能平台治理算法去甄别违规行为,保护用户的购物体验;我们还要建设智能客服技术、大规模商品知识图谱来提升各个交易环节的效率;我们也要结合机器学习和运筹算法,来优化供应链和物流的效率和成本,并进一步提升用户体验;另外我们还会用人工智能来帮助商家提升经营能力。我们的使命:没有难卖的优价好物,让美好生活触手可得。 课题介绍: 电商推荐算法是互联网商业变现的核心驱动力,目前我们有国内最大的兴趣电商分发场景以及最大的电商广告分发场景,我们希望借鉴生成式AI的成功思路,探索在电商推荐算法和架构上的颠覆性创新,解锁更大的算法效果提升空间。重点探索以下方向: 1)基于类Transformer结构的生成式推荐大模型技术,验证电商推荐场景的Scaling Law,探索面向大模型的特征工程以及算法建模范式; 2)研究电商推荐模态下的Tokenization以及COT相关算法优化; 3)算法和工程协同设计与优化,提升海量数据、超大参数背景下的训练与推理效率; 4)语言/推荐/视频等多模态模型的结合。 1、负责电商推荐及电商广告场景推荐大模型的算法优化,引入生成式AI技术,优化算法建模方法、模型结构、特征和样本等,提升电商分发效率; 2、验证推荐大模型的Scaling Law,应对大模型训练中的一切新挑战; 3、挖掘有效的用户行为,不限于Sideinfo、Action_Type等,同时研究行为聚合算法; 4、算法和工程高度融合、协同设计,极致优化推荐大模型的训练及推理效率。

更新于 2025-05-27
logo of bytedance
实习A135123A

团队介绍:Data-电商团队,负责电商创新项目的算法和大数据工作。依托于字节跳动产品,帮助用户发现并获得好物,享受美好生活。在这个团队,我们不仅要通过推荐和搜索算法帮助用户买到感兴趣的好东西,也要通过风控算法和智能平台治理算法去甄别违规行为,保护用户的购物体验;我们还要建设智能客服技术、大规模商品知识图谱来提升各个交易环节的效率;我们也要结合机器学习和运筹算法,来优化供应链和物流的效率和成本,并进一步提升用户体验;另外我们还会用人工智能来帮助商家提升经营能力。我们的使命:没有难卖的优价好物,让美好生活触手可得。 课题介绍: 背景:本项目旨在探索推荐领域下的大模型新范式,突破现在持续了较长时间的推荐模型结构和Infra的方案,且效果大幅好于现在的基线模型,在抖音短视频/直播/电商/头条/剪映等多个业务场景上得到应用。推荐领域的大模型是比较有挑战的事情,推荐对工程效率的要求更高,且用户的推荐体验上是个性化的,本课题会以下多个方向来做深入的研究,探索和建设推荐场景的大模型方案,大幅提升推荐模型的天花板。 1、在电商推荐海量用户与商品的数据下,探索大模型、大算力与推荐系统的结合; 2、探索多模态大模型等技术,提升相关类场景效果与用户体验; 3、探索LLM和推荐系统的结合、生成式推荐等方向,进一步提升信息匹配的效率。

更新于 2025-03-06
logo of bytedance
实习A72532

团队介绍:Data-电商团队,负责电商创新项目的算法和大数据工作。依托于字节跳动产品,帮助用户发现并获得好物,享受美好生活。在这个团队,我们不仅要通过推荐和搜索算法帮助用户买到感兴趣的好东西,也要通过风控算法和智能平台治理算法去甄别违规行为,保护用户的购物体验;我们还要建设智能客服技术、大规模商品知识图谱来提升各个交易环节的效率;我们也要结合机器学习和运筹算法,来优化供应链和物流的效率和成本,并进一步提升用户体验;另外我们还会用人工智能来帮助商家提升经营能力。我们的使命:没有难卖的优价好物,让美好生活触手可得。 课题背景:抖音为用户提供了从娱乐、教育到生活方式的众多内容,形成了广泛的兴趣图谱。多样化的内容消费,不仅反映了用户的即时偏好,还蕴含了深层的消费喜好和潜在购物需求。如何有效建模用户对娱乐内容的兴趣并迁移至电商场景,成为了一个亟待解决的课题。不仅涉及到理解对视频内容的理解,还需构建跨域的兴趣映射机制,实现从内容兴趣到电商兴趣的高效建模。与此同时,随着大模型多模态技术的兴起,我们希望在语言、视频、推荐多个模态下,构建更加强大的推荐系统。 课题挑战: 1)多模态复杂性:用户行为涉及多模态交互(如视频+直播+文字+行为),需统一框架实现内容理解与用户意图推理; 2)识别非电商内容对应的潜在购物信号,研究从内容消费到电商兴趣的高效映射; 3)利用海量数据和世界知识搭建领先的机器学习和推荐服务,实现用户和商品的高效匹配。 研究方向:大语言模型、多模态大模型、内容理解、推荐系统。

更新于 2025-06-09
logo of bytedance
实习A89171

团队介绍:Data-电商团队,负责电商创新项目的算法和大数据工作。依托于字节跳动产品,帮助用户发现并获得好物,享受美好生活。在这个团队,我们不仅要通过推荐和搜索算法帮助用户买到感兴趣的好东西,也要通过风控算法和智能平台治理算法去甄别违规行为,保护用户的购物体验;我们还要建设智能客服技术、大规模商品知识图谱来提升各个交易环节的效率;我们也要结合机器学习和运筹算法,来优化供应链和物流的效率和成本,并进一步提升用户体验;另外我们还会用人工智能来帮助商家提升经营能力。我们的使命:没有难卖的优价好物,让美好生活触手可得。 课题背景:抖音为用户提供了从娱乐、教育到生活方式的众多内容,形成了广泛的兴趣图谱。多样化的内容消费,不仅反映了用户的即时偏好,还蕴含了深层的消费喜好和潜在购物需求。如何有效建模用户对娱乐内容的兴趣并迁移至电商场景,成为了一个亟待解决的课题。不仅涉及到理解对视频内容的理解,还需构建跨域的兴趣映射机制,实现从内容兴趣到电商兴趣的高效建模。与此同时,随着大模型多模态技术的兴起,我们希望在语言、视频、推荐多个模态下,构建更加强大的推荐系统。 课题挑战: 1)多模态复杂性:用户行为涉及多模态交互(如视频+直播+文字+行为),需统一框架实现内容理解与用户意图推理; 2)识别非电商内容对应的潜在购物信号,研究从内容消费到电商兴趣的高效映射; 3)利用海量数据和世界知识搭建领先的机器学习和推荐服务,实现用户和商品的高效匹配。 研究方向:大语言模型、多模态大模型、内容理解、推荐系统。

更新于 2025-06-09