logo of bytedance

字节跳动大模型应用算法工程师-数据智能-筋斗云人才计划

社招全职A19039地点:北京状态:招聘

任职要求


1、人工智能等相关专业优先(如计算机科学、数学、电子工程等),有强化学习研究经验优先;
2、熟练使用PythonPyTorch等语言和代码库,熟悉大模型领域尤其是强化学习相关研究工作和算法,有大模型强化学习的研发基础,拥有高影响力会议论文(ICLRNeurIPSICML等)、知名竞赛获奖经验者优先;
3、有优秀的学术视野和判断力,具备优秀的问题提出、分析和解决能力,良好的团队协作精神和沟通意识。

工作职责


团队介绍:专注大模型在数据智能方向的应用落地,横向支持公司多个数据产品的大模型解决方案。团队致力于跟进大模型前沿进展,结合领域模型的优化策略来设计端到端的算法优化和评估方案,实现数据产品的智能升级与应用效果提升。团队鼓励敏捷创新,知识共享的协作氛围,专注投入对数据智能课题的持续探索研究。

课题介绍:
背景:在Bird、Spider2.0等复杂数据分析榜单中,基于通用大模型的COT、Prompt 工程方案相比BI分析师仍有较大差距(sota 75 vs 92)。近期推理大模型例如OpenAI O3、DeepSeek R1利用Test-Time Scaling Law提升模型推理能力,并指出后训练阶段中RL是提升的重要训练方式。本课题聚焦推理大模型后训练技术(SFT+RL),通过reasoning优化模糊语义理解、多步逻辑推导、复杂查询分解等关键问题,目标建立数据分析领域的推理大模型的方法体系。

课题主要关注的挑战点包括:
1、数据分析领域中高质量的reasoning数据生成,基于高质量数据的SFT冷启动训练来提升RL(GRPO、PPO)训练稳定性,包括多Epoch训练稳定、推理格式对齐等问题;
2、通过混合Reward(包括语义理解、代码执行、难度区分、子查询效率等多角度Reward)提升在模糊语义理解、多步逻辑推导、复杂查询分解的reasoning效果来提升结果准确率;
3、探索推理大模型overthinking的解决方案,面向简单到复杂问题数据分析问题,推理模型可合理的输出推理过程长度,同时保持整体准确率效果。

1、数据增强算法优化:设计面向数据推理任务的Data-Centric算法框架,优化Reasoning Data合成链路,提升训练数据的逻辑一致性、领域适配性与多样性;
2、Test-Time Compute:负责数据大模型与推理大模型的创新结合,解决思维链生成中的Over/Under-Thinking问题,探索复杂数据分析任务的Reward最优实践收益(包括语义理解、执行正确、查询效率、洞察启发性等);
3、推理大模型应用落地:跟进开源SOTA大模型的技术演进,实践Post-Training阶段的领域适配优化,在数据洞察机器人等产品中的验证应用价值,并基于评估体系实现效果的持续迭代,沉淀技术专利。
包括英文材料
强化学习+
Python+
PyTorch+
大模型+
算法+
NeurIPS+
ICML+
相关职位

logo of bytedance
校招A40025

团队介绍:专注大模型在数据智能方向的应用落地,横向支持公司多个数据产品的大模型解决方案。团队致力于跟进大模型前沿进展,结合领域模型的优化策略来设计端到端的算法优化和评估方案,实现数据产品的智能升级与应用效果提升。团队鼓励敏捷创新,知识共享的协作氛围,专注投入对数据智能课题的持续探索研究。 课题介绍: 背景:在Bird、Spider2.0等复杂数据分析榜单中,基于通用大模型的COT、Prompt 工程方案相比BI分析师仍有较大差距(sota 75 vs 92)。近期推理大模型例如OpenAI O3、DeepSeek R1利用Test-Time Scaling Law提升模型推理能力,并指出后训练阶段中RL是提升的重要训练方式。本课题聚焦推理大模型后训练技术(SFT+RL),通过reasoning优化模糊语义理解、多步逻辑推导、复杂查询分解等关键问题,目标建立数据分析领域的推理大模型的方法体系。 课题主要关注的挑战点包括: 1、数据分析领域中高质量的reasoning数据生成,基于高质量数据的SFT冷启动训练来提升RL(GRPO、PPO)训练稳定性,包括多Epoch训练稳定、推理格式对齐等问题; 2、通过混合Reward(包括语义理解、代码执行、难度区分、子查询效率等多角度Reward)提升在模糊语义理解、多步逻辑推导、复杂查询分解的reasoning效果来提升结果准确率; 3、探索推理大模型overthinking的解决方案,面向简单到复杂问题数据分析问题,推理模型可合理的输出推理过程长度,同时保持整体准确率效果。 1、数据增强算法优化:设计面向数据推理任务的Data-Centric算法框架,优化Reasoning Data合成链路,提升训练数据的逻辑一致性、领域适配性与多样性; 2、Test-Time Compute:负责数据大模型与推理大模型的创新结合,解决思维链生成中的Over/Under-Thinking问题,探索复杂数据分析任务的Reward最优实践收益(包括语义理解、执行正确、查询效率、洞察启发性等); 3、推理大模型应用落地:跟进开源SOTA大模型的技术演进,实践Post-Training阶段的领域适配优化,在数据洞察机器人等产品中的验证应用价值,并基于评估体系实现效果的持续迭代,沉淀技术专利。

更新于 2025-05-21
logo of bytedance
校招A21691

团队介绍:专注大模型在数据智能方向的应用落地,横向支持公司多个数据产品的大模型解决方案。团队致力于跟进大模型前沿进展,结合领域模型的优化策略来设计端到端的算法优化和评估方案,实现数据产品的智能升级与应用效果提升。团队鼓励敏捷创新,知识共享的协作氛围,专注投入对数据智能课题的持续探索研究。 课题介绍: 背景:在Bird、Spider2.0等复杂数据分析榜单中,基于通用大模型的COT、Prompt 工程方案相比BI分析师仍有较大差距(sota 75 vs 92)。近期推理大模型例如OpenAI O3、DeepSeek R1利用Test-Time Scaling Law提升模型推理能力,并指出后训练阶段中RL是提升的重要训练方式。本课题聚焦推理大模型后训练技术(SFT+RL),通过reasoning优化模糊语义理解、多步逻辑推导、复杂查询分解等关键问题,目标建立数据分析领域的推理大模型的方法体系。 课题主要关注的挑战点包括: 1、数据分析领域中高质量的reasoning数据生成,基于高质量数据的SFT冷启动训练来提升RL(GRPO、PPO)训练稳定性,包括多Epoch训练稳定、推理格式对齐等问题; 2、通过混合Reward(包括语义理解、代码执行、难度区分、子查询效率等多角度Reward)提升在模糊语义理解、多步逻辑推导、复杂查询分解的reasoning效果来提升结果准确率; 3、探索推理大模型overthinking的解决方案,面向简单到复杂问题数据分析问题,推理模型可合理的输出推理过程长度,同时保持整体准确率效果。 1、数据增强算法优化:设计面向数据推理任务的Data-Centric算法框架,优化Reasoning Data合成链路,提升训练数据的逻辑一致性、领域适配性与多样性; 2、Test-Time Compute:负责数据大模型与推理大模型的创新结合,解决思维链生成中的Over/Under-Thinking问题,探索复杂数据分析任务的Reward最优实践收益(包括语义理解、执行正确、查询效率、洞察启发性等); 3、推理大模型应用落地:跟进开源SOTA大模型的技术演进,实践Post-Training阶段的领域适配优化,在数据洞察机器人等产品中的验证应用价值,并基于评估体系实现效果的持续迭代,沉淀技术专利。

更新于 2025-05-21
logo of bytedance
校招A248757

团队介绍:Stone-AI PaaS团队专注研究AI/大模型应用相关领域的技术和产品,致力于创造和实现创新的人工智能平台服务。团队目前已服务于字节跳动多款产品,比如豆包、Cici、Coze、Trae等。同时团队内部也在孵化多款AI应用创新产品,积极探索大模型应用的技术发展。团队氛围好,发展空间大,欢迎加入! 课题介绍: 背景:随着人工智能技术的飞速发展,大语言模型(LLM)在自然语言处理领域取得了显著进展,为智能对话系统的发展提供了有力支撑。然而,现有的智能对话系统在面对复杂多变的实际应用场景时,仍存在诸多不足。一方面,用户对于交互的多样性和便捷性提出了更高要求,期望能够实现语音、图像、文本等多模态信息的自然交互;另一方面,面对复杂问题,当前对话系统缺乏深度思考和推理能力,难以提供全面且精准的解答。同时,在知识获取方面,如何高效地调度各类工具,挖掘优质内容,以满足用户的多样化需求,也成为亟待解决的问题。因此,开展对多模态交互、深度思考、工具调度以及优质内容挖掘方向的研究,对于提升通用对话助手的性能和用户体验具有重要的现实意义。 研究方向: 1、多模态交互方向:深入研究语音、图像、文本等多模态信息的融合与交互技术,开发能够实现多模态信息无缝对接的算法模型。通过构建多模态语义理解框架,使对话助手能够准确理解不同模态输入的含义,并根据用户需求以语音、图像、文本等多种形式进行输出,实现自然流畅的多模态交互体验。例如,当用户输入一张图片并提出相关问题时,对话助手能够识别图片内容,并结合文本信息进行分析解答,同时可以以语音形式反馈结果; 2、深度思考方向:探索基于深度学习的推理机制,提升对话助手的逻辑推理和问题解决能力。引入知识图谱、语义网络等技术,增强对话助手对知识的理解和运用能力,使其能够在面对复杂问题时,进行深度思考和分析,挖掘问题的本质,提供更具逻辑性和准确性的回答。比如,在解答科学类复杂问题时,对话助手能够基于知识图谱进行推理,给出全面且深入的解释; 3、工具调度方向:构建智能工具调度系统,使对话助手能够根据用户问题的类型和需求,自动识别并调用合适的外部工具,如信息检索工具、数据分析工具、翻译工具等。建立工具之间的协同工作机制,确保在处理复杂任务时,多个工具能够相互配合,实现信息共享和流程优化,提高问题解决的效率和质量。例如,在处理跨国业务相关问题时,对话助手可以同时调用翻译工具和信息检索工具,快速获取并翻译相关资料,为用户提供准确信息; 4、优质内容挖掘方向:研发高效的内容挖掘算法,从海量的文本、图像、视频等数据中筛选出优质、有价值的信息。利用自然语言处理和计算机视觉技术,对内容进行分类、标注和评估,建立优质内容数据库。通过与对话助手的交互,根据用户的兴趣和需求,精准推送相关的优质内容,满足用户对高质量信息的获取需求。比如,为对历史文化感兴趣的用户推荐相关的优质纪录片、学术论文等。

更新于 2025-05-16
logo of bytedance
校招A224729

团队介绍:Stone-AI PaaS团队专注研究AI/大模型应用相关领域的技术和产品,致力于创造和实现创新的人工智能平台服务。团队的算法能力目前已服务于字节跳动多款产品,比如豆包、Cici、Coze、Trae等。同时团队内部也在孵化多款AI应用创新产品,积极探索大模型应用的技术发展。团队氛围好,发展空间大,欢迎加入! 课题介绍: 背景:随着人工智能技术的飞速发展,大语言模型(LLM)在自然语言处理领域取得了显著进展,为智能对话系统的发展提供了有力支撑。然而,现有的智能对话系统在面对复杂多变的实际应用场景时,仍存在诸多不足。一方面,用户对于交互的多样性和便捷性提出了更高要求,期望能够实现语音、图像、文本等多模态信息的自然交互;另一方面,面对复杂问题,当前对话系统缺乏深度思考和推理能力,难以提供全面且精准的解答。同时,在知识获取方面,如何高效地调度各类工具,挖掘优质内容,以满足用户的多样化需求,也成为亟待解决的问题。因此,开展对多模态交互、深度思考、工具调度以及优质内容挖掘方向的研究,对于提升通用对话助手的性能和用户体验具有重要的现实意义。 研究方向: 1、多模态交互方向:深入研究语音、图像、文本等多模态信息的融合与交互技术,开发能够实现多模态信息无缝对接的算法模型。通过构建多模态语义理解框架,使对话助手能够准确理解不同模态输入的含义,并根据用户需求以语音、图像、文本等多种形式进行输出,实现自然流畅的多模态交互体验。例如,当用户输入一张图片并提出相关问题时,对话助手能够识别图片内容,并结合文本信息进行分析解答,同时可以以语音形式反馈结果; 2、深度思考方向:探索基于深度学习的推理机制,提升对话助手的逻辑推理和问题解决能力。引入知识图谱、语义网络等技术,增强对话助手对知识的理解和运用能力,使其能够在面对复杂问题时,进行深度思考和分析,挖掘问题的本质,提供更具逻辑性和准确性的回答。比如,在解答科学类复杂问题时,对话助手能够基于知识图谱进行推理,给出全面且深入的解释; 3、工具调度方向:构建智能工具调度系统,使对话助手能够根据用户问题的类型和需求,自动识别并调用合适的外部工具,如信息检索工具、数据分析工具、翻译工具等。建立工具之间的协同工作机制,确保在处理复杂任务时,多个工具能够相互配合,实现信息共享和流程优化,提高问题解决的效率和质量。例如,在处理跨国业务相关问题时,对话助手可以同时调用翻译工具和信息检索工具,快速获取并翻译相关资料,为用户提供准确信息; 4、优质内容挖掘方向:研发高效的内容挖掘算法,从海量的文本、图像、视频等数据中筛选出优质、有价值的信息。利用自然语言处理和计算机视觉技术,对内容进行分类、标注和评估,建立优质内容数据库。通过与对话助手的交互,根据用户的兴趣和需求,精准推送相关的优质内容,满足用户对高质量信息的获取需求。比如,为对历史文化感兴趣的用户推荐相关的优质纪录片、学术论文等。

更新于 2025-05-16