字节跳动科学生成模型实习生-Seed
任职要求
1、硕士及以上学位在读,计算机科学等相关专业优先; 2、在AI和机器学习方面拥有很强的研究经验,在国际顶会(例如ICML,NeurIPS,ICLR)和期刊上发表过论文,涵盖大语言模型,扩散模型,几何深度学习,自然语言处理,蛋白质设计,蛋白质结构和构象预测等领域; 3、精通Python和PyTorch。
工作职责
日常实习:面向全体在校生,为符合岗位要求的同学提供为期3个月及以上的项目实践机会。 团队介绍:字节跳动 Seed 团队成立于 2023 年,致力于寻找通用智能的新方法,追求智能上限。团队研究方向涵盖 LLM、语音、视觉、世界模型、基础架构、AI Infra、下一代 AI 交互等,在中国、新加坡、美国等地设有实验室和岗位。 Seed 团队在 AI 领域拥有长期愿景与决心,坚持深耕基础,期望成为世界一流的 AI 研究团队,为科技和社会发展作出贡献。目前团队已推出业界领先的通用大模型以及前沿的多模态能力,支持豆包、扣子、即梦等超过 50 个应用场景。 1、开发自然科学的基础大模型,用于蛋白质结构预测、分子构象生成和蛋白质设计; 2、利用公共基准和数据库评估新的AI/ML方法; 3、与多学科团队密切合作,将创新算法应用于解决前沿挑战。
日常实习:面向全体在校生,为符合岗位要求的同学提供为期3个月及以上的项目实践机会。 团队介绍:字节跳动Seed团队成立于2023年,致力于寻找通用智能的新方法,追求智能上限。团队研究方向涵盖LLM、语音、视觉、世界模型、基础架构、AI Infra、下一代AI交互等、在中国、新加坡、美国等地设有实验室和岗位。 Seed团队在AI领域拥有长期愿景与决心,坚持深耕基础,期望成为世界一流的AI研究团队,为科技和社会发展作出贡献。目前团队已推出业界领先的通用大模型以及前沿的多模态能力,支持豆包、扣子、即梦等超过50个应用场景。 1、跟踪业界前沿研究进展,和团队一起建立深入广泛的领域技术认知; 2、综合机器学习、量子化学、分子动力学等多个领域的方法,探索生物、材料领域前沿应用; 3、整合业界及团队研究成果,推动研究成果实际落地应用,产生广泛的影响力。
Top Seed人才计划-豆包大模型研究实习生专项:面向 2025 年 9 月及以后毕业的博士及本硕在读同学,加入我们,你可以自主决定研究课题,与正式员工享受同等权限和资源,和优秀的研究员一起,向智能上限发起挑战。 团队介绍:字节跳动 Seed 团队成立于 2023 年,致力于寻找通用智能的新方法,追求智能上限。团队研究方向涵盖 LLM、语音、视觉、世界模型、基础架构、AI Infra、下一代 AI 交互等,在中国、新加坡、美国等地设有实验室和岗位。 Seed 团队在 AI 领域拥有长期愿景与决心,坚持深耕基础,期望成为世界一流的 AI 研究团队,为科技和社会发展作出贡献。目前团队已推出业界领先的通用大模型以及前沿的多模态能力,支持豆包、扣子、即梦等超过 50 个应用场景。 1、AI搜索总结Agent研发: 1)设计并实现基于LLM的搜索总结Agent,提升搜索结果的理解、推理与结构化总结能力; 2)探索LLM Reasoning技术(如思维链、多步推理),优化复杂查询的Deep Research模式,实现长文本理解与跨文档信息融合; 3)构建端到端系统,涵盖意图识别、知识检索、结果生成与偏好对齐,提升用户体验; 2、模型优化及应用: 1)通过指令微调(Instruction Tuning)、偏好对齐(RLHF/DPO)等技术优化模型在搜索场景的适应性; 2)探索多模态信息(文本、代码、结构化数据)融合的搜索与生成技术; 3)研究未来生活中的创新应用场景(如个性化知识助手、自动化研究工具),探索技术边界。
Top Seed人才计划-豆包大模型研究实习生专项:面向 2025年 9 月及以后毕业的博士及本硕在读同学,加入我们,你可以自主决定研究课题,与正式员工享受同等权限和资源,和优秀的研究员一起,向智能上限发起挑战。 团队介绍:字节跳动 Seed 团队成立于 2023 年,致力于寻找通用智能的新方法,追求智能上限。团队研究方向涵盖 LLM、语音、视觉、世界模型、基础架构、AI Infra、下一代 AI 交互等,在中国、新加坡、美国等地设有实验室和岗位。 Seed 团队在 AI 领域拥有长期愿景与决心,坚持深耕基础,期望成为世界一流的 AI 研究团队,为科技和社会发展作出贡献。目前团队已推出业界领先的通用大模型以及前沿的多模态能力,支持豆包、扣子、即梦等超过 50 个应用场景。 1、AI搜索总结Agent研发: 1)设计并实现基于LLM的搜索总结Agent,提升搜索结果的理解、推理与结构化总结能力; 2)探索LLM Reasoning技术(如思维链、多步推理),优化复杂查询的Deep Research模式,实现长文本理解与跨文档信息融合; 3)构建端到端系统,涵盖意图识别、知识检索、结果生成与偏好对齐,提升用户体验; 2、模型优化及应用: 1)通过指令微调(Instruction Tuning)、偏好对齐(RLHF/DPO)等技术优化模型在搜索场景的适应性; 2)探索多模态信息(文本、代码、结构化数据)融合的搜索与生成技术; 3)研究未来生活中的创新应用场景(如个性化知识助手、自动化研究工具),探索技术边界。
研究领域: 人工智能 项目简介: AIGC持续发展,以人为中心的图像、视频、语音等模型的生成能力愈发成熟,最近动动嘴就能PS、图像、视频及语音等产品例如25年3月发布的谷歌的Gemini 2.0Flash以及字节的SeedEdit等产品,迅速走进大众,AIGC等对抗愈发激烈且常态化。目前防控手段都是单模态进行防控,所有模态All-in-one的omini模型目前尚未有好的工作,同时结合类似deepseek多模态推理解决泛化能力、文本之外基于基于多模态生成式的视觉Reward去打造新的左右互搏式LMM范式,以及世界模型思路下去预测未来攻击的方案,都是当下可以探索的思路,目标是围绕AI信息原生可信打造成安全特色能力。