字节跳动音视频机器学习平台开发实习生-Seed
任职要求
1、本科及以上学历在读,计算机及相关专业优先; 2、扎实的编程基础、良好的编程风格,熟悉多线程编程、分布式计算、网络通信、内存管理、设计模式; 3、有工程研发或者基础架构经验,熟练掌握C/C++、Python、Golang等至少一种开发语言; 4、熟悉PyTorch深度学习框架和MLOps相关工作,了解常见深度学习算法; 5、具备分布式系统的研发经验,有优化系统性能问题的能力和经验。 具备以下一个或者多个条件者优先: 1、具有大规模分布式架构设计开发经验; 2、熟悉K8s、KubeFlow等云原生组件开发经验; 3、熟悉Hadoop、HDFS、Spark、ClickHouse等大数据技术栈。
工作职责
日常实习:面向全体在校生,为符合岗位要求的同学提供为期3个月及以上的项目实践机会。 团队介绍:字节跳动 Seed 团队成立于 2023 年,致力于寻找通用智能的新方法,追求智能上限。团队研究方向涵盖 LLM、语音、视觉、世界模型、基础架构、AI Infra、下一代 AI 交互等,在中国、新加坡、美国等地设有实验室和岗位。 Seed 团队在 AI 领域拥有长期愿景与决心,坚持深耕基础,期望成为世界一流的 AI 研究团队,为科技和社会发展作出贡献。目前团队已推出业界领先的通用大模型以及前沿的多模态能力,支持豆包、扣子、即梦等超过 50 个应用场景。 1、参与设计并实现高可用、可扩展、分布式机器学习平台,支撑字节跳动智能语音相关业务算法生产与高效迭代; 2、与算法工程师密切配合,理解深度学习模型研发流程,负责/参与机器学习平台的设计、开发和维护; 3、持续提升平台效率、易用性、降低算法使用成本,探索业界前沿的机器学习相关技术,设计并实现到机器学习平台中。
T-Star计划是阿里巴巴淘天集团顶尖人才招聘和培养项目,继承“阿里星〞的使命与愿景,面向全球招募顶尖技术人才。首次开设实习生专项招聘,面向2025年10月后毕业的校优秀技术同学。期待你们在淘天,通过极具挑战的前沿课题与亿级规模的海量数据、应用场景,探索和实践最前沿的Al技术,在有价值的业务场景落地技术成果。 在这里,你将参与贡献大型电商场景下与音视频体验和成本相关的一系列研发工作; 在这里,你将参与视频编码(包括但不限于HEVC/VVC)优化:通过基于信号处理和机器学习的快速编码决策、数据结构、并行框架设计,优化编码速度,同时在有竞争力的视频编码内核基础上,探索基于语义的内容感知编码优化,深度学习编码,AIGC编码等前沿课题,在保障画质体验的前提下,尽可能节省带宽; 在这里,你将参与海量图像和视频的增强修复工作:运用前沿技术,包括但不限于模型结构优化、数据仿真和增强策略优化、知识蒸馏以及模型压缩,在限定带宽环境对任意失真的视频进行高效处理,力求最好的画质。同时,跟踪业界最新进展和技术趋势(包括AIGC)并融入特定的场景,提出创新方案,帮助平台提供逼近广电级别的视频画质; 在这里,你将参与视频编码与处理联合优化:在标准编码框架的基础上,借助AI领域的新技术成果来研究视频信号的表征、编码与处理,将视频前后处理与编码联合优化,提升端到端压缩效果; 在这里,你将参与美颜等视频美化技术的研究工作,包括人脸检测、关键点、肤色美白、面部塑形、化妆效果模拟等。这些技术将应用于直播和短视频等多样化场景,并确保其在真实视频场景的有效整合。你还将专注于基于3D人脸建模和AI算法的智能美颜技术,推动这些技术的大规模落地; 在这里,你将参与UGC视频生产剪辑依赖的多类当下最前沿的图像视频生成与编辑,包括图像风格化,人像分割与实例分割,人脸属性,图像可控生成,图像视频化等,为视频剪辑提供更丰富的素材和更多的玩法; 在这里,你将有机会参与最前沿的音视频质量评价算法工作,包括无参考的视频质量评价,人脸美学评价,音频质量评价,为多媒体算法的迭代和平台音画质的体验提供基础工具; 在这里,你将帮助淘宝直播等大型的视频传输场景设计QoS算法,追求超低延时、极速播放等用户体验,并支持各种弱网环境下的最优的视频流畅度和优雅的画质降级。 T-Star实习可以带给你什么? ꔷ ①加入前沿技术探索队伍,参与顶级课题研究,有机会实现工业界项目落地。②跟企业大牛导师/学术界名导一起做有价值的课题。③丰富的技术资源、海量的数据与优秀的团队助力发paper
T-Star计划是阿里巴巴淘天集团顶尖人才招聘和培养项目,继承“阿里星〞的使命与愿景,面向全球招募顶尖技术人才。首次开设实习生专项招聘,面向2025年10月后毕业的校优秀技术同学。期待你们在淘天,通过极具挑战的前沿课题与亿级规模的海量数据、应用场景,探索和实践最前沿的Al技术,在有价值的业务场景落地技术成果。 在这里,你将参与贡献大型电商场景下与音视频体验和成本相关的一系列研发工作; 在这里,你将参与视频编码(包括但不限于HEVC/VVC)优化:通过基于信号处理和机器学习的快速编码决策、数据结构、并行框架设计,优化编码速度,同时在有竞争力的视频编码内核基础上,探索基于语义的内容感知编码优化,深度学习编码,AIGC编码等前沿课题,在保障画质体验的前提下,尽可能节省带宽; 在这里,你将参与海量图像和视频的增强修复工作:运用前沿技术,包括但不限于模型结构优化、数据仿真和增强策略优化、知识蒸馏以及模型压缩,在限定带宽环境对任意失真的视频进行高效处理,力求最好的画质。同时,跟踪业界最新进展和技术趋势(包括AIGC)并融入特定的场景,提出创新方案,帮助平台提供逼近广电级别的视频画质; 在这里,你将参与视频编码与处理联合优化:在标准编码框架的基础上,借助AI领域的新技术成果来研究视频信号的表征、编码与处理,将视频前后处理与编码联合优化,提升端到端压缩效果; 在这里,你将参与美颜等视频美化技术的研究工作,包括人脸检测、关键点、肤色美白、面部塑形、化妆效果模拟等。这些技术将应用于直播和短视频等多样化场景,并确保其在真实视频场景的有效整合。你还将专注于基于3D人脸建模和AI算法的智能美颜技术,推动这些技术的大规模落地; 在这里,你将参与UGC视频生产剪辑依赖的多类当下最前沿的图像视频生成与编辑,包括图像风格化,人像分割与实例分割,人脸属性,图像可控生成,图像视频化等,为视频剪辑提供更丰富的素材和更多的玩法; 在这里,你将有机会参与最前沿的音视频质量评价算法工作,包括无参考的视频质量评价,人脸美学评价,音频质量评价,为多媒体算法的迭代和平台音画质的体验提供基础工具; 在这里,你将帮助淘宝直播等大型的视频传输场景设计QoS算法,追求超低延时、极速播放等用户体验,并支持各种弱网环境下的最优的视频流畅度和优雅的画质降级。 T-Star实习可以带给你什么? ꔷ ①加入前沿技术探索队伍,参与顶级课题研究,有机会实现工业界项目落地。②跟企业大牛导师/学术界名导一起做有价值的课题。③丰富的技术资源、海量的数据与优秀的团队助力发paper ꔷ 投递T-Star实习生,提前解锁淘天顶级技术岗位,实习与T-Star正式批/应届秋招投递不冲突。拿到T-Star意向书的同时,将获得直通正式批次终面的机会;参与T-Star实习且表现优秀的同学,提供T-Star转正Offer。
T-Star计划是阿里巴巴淘天集团顶尖人才招聘和培养项目,继承“阿里星〞的使命与愿景,面向全球招募顶尖技术人才。首次开设实习生专项招聘,面向2025年10月后毕业的校优秀技术同学。期待你们在淘天,通过极具挑战的前沿课题与亿级规模的海量数据、应用场景,探索和实践最前沿的Al技术,在有价值的业务场景落地技术成果。 在这里,你将参与贡献大型电商场景下与音视频体验和成本相关的一系列研发工作; 在这里,你将参与视频编码(包括但不限于HEVC/VVC)优化:通过基于信号处理和机器学习的快速编码决策、数据结构、并行框架设计,优化编码速度,同时在有竞争力的视频编码内核基础上,探索基于语义的内容感知编码优化,深度学习编码,AIGC编码等前沿课题,在保障画质体验的前提下,尽可能节省带宽; 在这里,你将参与海量图像和视频的增强修复工作:运用前沿技术,包括但不限于模型结构优化、数据仿真和增强策略优化、知识蒸馏以及模型压缩,在限定带宽环境对任意失真的视频进行高效处理,力求最好的画质。同时,跟踪业界最新进展和技术趋势(包括AIGC)并融入特定的场景,提出创新方案,帮助平台提供逼近广电级别的视频画质; 在这里,你将参与视频编码与处理联合优化:在标准编码框架的基础上,借助AI领域的新技术成果来研究视频信号的表征、编码与处理,将视频前后处理与编码联合优化,提升端到端压缩效果; 在这里,你将参与美颜等视频美化技术的研究工作,包括人脸检测、关键点、肤色美白、面部塑形、化妆效果模拟等。这些技术将应用于直播和短视频等多样化场景,并确保其在真实视频场景的有效整合。你还将专注于基于3D人脸建模和AI算法的智能美颜技术,推动这些技术的大规模落地; 在这里,你将参与UGC视频生产剪辑依赖的多类当下最前沿的图像视频生成与编辑,包括图像风格化,人像分割与实例分割,人脸属性,图像可控生成,图像视频化等,为视频剪辑提供更丰富的素材和更多的玩法; 在这里,你将有机会参与最前沿的音视频质量评价算法工作,包括无参考的视频质量评价,人脸美学评价,音频质量评价,为多媒体算法的迭代和平台音画质的体验提供基础工具; 在这里,你将帮助淘宝直播等大型的视频传输场景设计QoS算法,追求超低延时、极速播放等用户体验,并支持各种弱网环境下的最优的视频流畅度和优雅的画质降级。 T-Star实习可以带给你什么? ꔷ ①加入前沿技术探索队伍,参与顶级课题研究,有机会实现工业界项目落地。②跟企业大牛导师/学术界名导一起做有价值的课题。③丰富的技术资源、海量的数据与优秀的团队助力发paper
团队介绍:字节跳动基础架构团队主要负责公司云基础建设,支撑着字节跳动旗下多款APP产品,如抖音、今日头条、番茄小说、西瓜视频、飞书、剪映等,同时也负责支持火山引擎公有云业务。迄今为止,我们通过云技术管理着百万量级的服务器构成的超大数据中心;我们通过字节深度优化的Kubernetes管理超过千万容器实例支持10万+微服务;我们还通过丰富的存储产品矩阵,如NewSQL、NoSQL、云存储等治理EB级的数据资产;我们积极拥抱开源和创新的软硬件架构,致力于构建业界领先的云基础设施,为整个公司的业务和客户发展保驾护航。我们热切期待对技术有追求、对大型系统有深刻见解的同学加入基础架构团队一起构建基础设施系统。 课题介绍: 课题背景: 在大语言模型蓬勃发展的当下,本课题聚焦于智能云基础设施与数据处理关键技术的多维度研究,旨在全面提升云服务在 AI 场景下的综合性能与效率。 课题挑战: 1、新一代搜索型数据库:当前产业界广泛应用的ElasticSearch面临数据与用户需求的深刻变革。需实现语义检索升级,突破关键词匹配限制,以满足学术研究等领域对语义理解和精准检索的要求;具备处理和融合多模态数据的能力,应对互联网图像、音视频多模态数据的爆发式增长;优化检索过程,更好地支持检索增强生成(RAG)技术,为语言模型提供优质信息;同时,需应对各行业海量数据存储检索压力,提升搜索实时性与跨语言能力; 2、面向LLM的下一代智能云基础架构:一方面,自动化和智能化管理基础架构各系统生命周期,深度融合人工智能与基础架构关键系统,建设大规模工业级Self-Driving Infra平台;另一方面,针对新涌现的LLM应用场景,在基础架构各个领域进行前沿技术创新,与字节工程团队合作,设计和开发高性价比且简单易用的下一代大模型基础架构,为火山引擎奠定技术与业务增长基础; 3、面向 AI 场景的serverless高性能弹性文件系统关键技术研究:大模型时代数据量爆炸式增长,当前文件系统多采用中心化元数据架构,难以水平扩展,限制文件系统规模及元数据性能。本研究将围绕元数据扩展性、与大模型深度结合提供Data Insight、设计高性能元数据单机引擎、实现任意目录快照、融合文件系统和对象存储元数据、内存加速、提供QoS(性能租户隔离和目录隔离)、故障处理(故障域隔离和故障无损)以及研发高性能客户端(用户态文件协议和DPU卸载)等关键技术展开; 4、面向大规模AI集群的高速通信和稳定性优化:随着大模型训练/推理业务规模增长,底层高速网络面临挑战。一方面,需解决GPU服务器硬件资源利用率偏低问题,包括充分利用CPU和内存空闲资源,以及研发计算通信融合的高性能集合通信库,实现通信算子与计算任务的深度融合;另一方面,在稳定性方面,提升故障快速发现和根因定位能力,解决网络吞吐不达预期等典型故障。