字节跳动推荐算法工程师-国际化短视频
任职要求
1、2026届获得硕士及以上学位,计算机、数学、物理等相关专业; 2、具备优秀的编码能力,扎实的数据结构和算法功底; 3、优秀的分析问题和解决问题的能力,对解决具有挑战性问…
工作职责
团队介绍:国际化短视频 machine learning团队,负责国际化短视频的基础推荐算法,直接为国际化短视频的核心用户体验负责。我们的工作内容包括大规模推荐算法的优化、复杂约束的优化问题的解决、CV/NLP等多个学术领域的算法改进以及对多种场景的推荐架构的设计和对产品数据的复杂深入的分析。在这里,你可以深入钻研机器学习算法的改进和优化,探索前沿的技术;可以跟来自全球不同国家的团队合作, 感受不同文化的碰撞, 激发认知;可以通过对产品和内容生态的深度分析,影响产品未来的发展方向。 1、负责国际化短视频算法工作,共同搭建业界领先的推荐系统,为用户提供一流的产品体验; 2、深度结合机器学习技术和各场景业务(内容消费,社交,推送,关注等),优化模型&策略,持续提升推荐效果; 3、应用先进的机器学习技术解决各种在线/离线,大数据量/小数据量,长期/短期信号等不同场景遇到的各种挑战,包括标签缺失,反馈周期长,收敛速度慢,信号相关性弱等; 4、和产品以及运营团队紧密合作,对用户、作者的行为做深入的理解和分析,制定针对的算法策略促进生态良性发展。
1、负责国际化短视频生活服务推荐算法,共同搭建业界领先的推荐系统; 2、深刻理解短视频/直播/地理位置/商品等推荐相关的机器学习/深度学习算法,优化模型/策略,持续提升推荐效果; 3、深入理解生活服务业务,从到店、外卖、酒旅等业务特性中挖掘算法亮点; 4、深入理解用户行为,结合数据挖掘等技术,优化用户创作和浏览等体验。
团队介绍:国际电商是以国际化短视频产品为载体的内容电商业务,致力于成为用户发现并获取优价好物的首选平台,在直播电商、视频内容电商等多场景下,国际电商业务希望能为用户提供更个性化、更主动、更高效的消费体验,为商家提供稳定可靠的平台服务,在更多的地区实现没有难卖的优价好物,让美好生活触手可得的使命。我们邀请你来此成长、钻研,发掘无限的潜力,一起应对技术和业务上的挑战。目前团队拥有丰富的国际化产品研发经验,包容多元的文化,且在全球设立研发团队,邀请你来一起接受跨国合作的挑战,还有出差外派机会在等你! 1、参与千万级~亿级规模的电商个性化推荐算法的优化,主要包括国际电商直播推荐、电商短视频推荐、新用户推荐、直播/视频冷启动、长期价值建模、体验优化等工作; 2、通过表征学习、深度学习、迁移学习、多任务学习等技术提升信息匹配的效率,让每个用户可以便捷的找到好的主播和优质的货品; 3、挖掘和分析海量用户行为数据,进行用户长短期兴趣建模,以及潜在兴趣预测、探索,提升推荐的精准性和发现性; 4、通过算法自动挖掘优质、专业、高口碑的商品和主播,构建良性的循环机制,优化内容电商生态; 5、结合内容电商的业务特性,进行模型和算法创新,打造业界领先的推荐算法和系统。
Team Introduction Our E-commerce is a content-driven commerce business built on globally-oriented short video platforms. Our mission is to become the go-to platform for users to discover and access high-quality products at great prices. Through multiple scenarios such as livestream e-commerce and video e-commerce, we aim to deliver a more personalized, proactive, and efficient shopping experience for users, while offering merchants a reliable platform to grow their business. We are committed to making great-value products easy to sell and easy to find across more regions, bringing a better life within reach for everyone. We invite you to grow with us, explore, innovate, and unlock your full potential as we tackle both technical and business challenges together. Our team brings rich experience in international product development, embraces diverse cultures, and operates R&D teams across the globe. Join us in facing the exciting challenges of cross-border collaboration, with opportunities for business travel and international assignments waiting for you! Project Introduction: As the world's leading short-video platform, TikTok faces multiple challenges in its recommendation systems, including data sparsity for new users leading to insufficient personalisation, high timeliness requirements for live steaming recommendations, difficulty in maintaining user interest diversity, and complex e-commerce recommendation system chains. Traditional recommendation methods heavily rely on historical behaviour modeling, which struggles with the cold-start problem for new users. Live-streaming recommendations demand real-time responsiveness to rapidly changing content dynamics (e.g., host interactions, traffic fluctuations) within extremely short time windows (typically within 30 minutes) posing higher demands on the system's real-time perception and decision-making capabilities. Additionally, the immersive single-feed format amplifies the challenge of maintaining content diversity, requiring a careful balance between multi-interest learning and the risk of content drift caused by exploratory recommendations. The current e-commerce recommendation system follows a multi-stage funnel architecture (recall–ranking–re-ranking), which often leads to inconsistent chains, high maintenance costs, and an overreliance on short-term value prediction. This leads users to fall into content homogenization fatigue. To address these pain points, this project proposes leveraging large language models (LLMs) and large model technologies to achieve significant breakthroughs. On one hand, LLMs—with their vast knowledge base and few-shot reasoning capabilities—can infer new users' potential intentions from registration data and external knowledge, thereby alleviating cold-start issues. On the other hand, by integrating graph neural networks (GNNs) and full-lifecycle user behavior sequences for modeling social preferences, we aim to improve the accuracy of interest prediction. Additionally, the project explores the generalization capabilities, long-context awareness, and end-to-end modeling strengths of large models to simplify the e-commerce recommendation chains, enhance adaptability to real-time changes, and improve exploratory recommendation effectiveness. The ultimate goal is to build a more streamlined system with more accurate recommendations, enhancing user experience and retention while driving sustainable business growth. 团队介绍 : 国际电商是以国际化短视频产品为载体的内容电商业务,致力于成为用户发现并获取优价好物的首选平台,在直播电商、视频内容电商等多场景下,国际电商业务希望能为用户提供更个性化、更主动、更高效的消费体验,为商家提供稳定可靠的平台服务,在更多的地区实现没有难卖的优价好物,让美好生活触手可得的使命。我们邀请你来此成长、钻研,发掘无限的潜力,一起应对技术和业务上的挑战。目前团队拥有丰富的国际化产品研发经验,包容多元的文化,且在全球设立研发团队,邀请你来一起接受跨国合作的挑战,还有出差外派机会在等你! 课题介绍: TikTok作为全球领先的短视频平台,面临新用户数据稀疏导致的个性化推荐不足、直播推荐时效性要求高、用户兴趣多样性维护困难以及电商推荐系统链路复杂等多重挑战。传统推荐方法依赖历史行为建模,难以解决新用户冷启动问题,且直播推荐需在极短窗口期内(通常30分钟内)实时捕捉内容动态变化(如主播互动、流量波动),这对系统的实时感知与快速决策能力提出更高要求。此外,单列沉浸式场景放大了多样性问题,需平衡多峰兴趣学习与探索引发的内容穿越风险。当前电商推荐系统采用多阶段漏斗架构(召回-排序-混排),存在链路不一致、维护成本高、过度依赖短期价值预测等问题,导致用户易陷入内容同质化疲劳。 针对上述痛点,项目提出结合大语言模型(LLM)和大模型技术实现突破:一方面利用LLM的海量知识储备与Few-shot推理能力,通过注册信息与外部知识推理新用户潜在意图,缓解冷启动问题;另一方面,在社交偏好建模中融合GNN与用户全生命周期行为序列,提升兴趣预测精准度。同时,探索大模型的泛化能力、长上下文感知及端到端建模优势,简化电商推荐链路,增强实时动态适应性与兴趣探索能力,最终实现系统更简洁、推荐更精准、用户体验与留存双提升的目标,推动业务可持续增长。