logo of bytedance

字节跳动AI应用产品工程师-抖音(抖音产品工程师人才计划)

校招全职A250504地点:北京状态:招聘

任职要求


1、2026届获得本科及以上学历;
2、有产品思维、有基本的用户理解、行业洞察、数据分析能力,有计算机相关知识,掌握编程能力,了解算法和大语言模型等方面的知识;
3、对业务有理解…
登录查看完整任职要求
微信扫码,1秒登录

工作职责


项目介绍:抖音产品工程师计划是面向全球具备技术能力的产品经理专属人才计划。在AI发展驱动下,我们寻找懂技术又有产品思维的复合型人才,打破常规“产品”和“技术”的界限,在高挑战的业务实战中亲手用代码实现产品构想。加入抖音,和优秀的人,做有挑战的事,一起定义AI时代的产品未来!

团队介绍:抖音致力于打造一个开放、积极、多元、友善的平台,鼓励表达、沟通和记录,激发创造,丰富人们的精神世界,让现实生活更美好。我们通过AI算法驱动的个性化推荐与智能创作工具,满足用户表达、学习、娱乐、社交、消费等需求。回顾抖音一路走来的历程,我们在帮助亿万用户记录美好生活的过程中,努力变得更好。

1、结合AI技术,为主播提供工具和玩法,提升直播内容趣味性和互动性,降低开播门槛,提升经营效率;
2、业务场景包含但不限于与主播实时互动的AI伴播,帮主播解决工具使用和经营问题的AI助手,及通过AIGC生成直播间装修和经营素材等方向;
3、与上下游协作方紧密协作,探索并提出创新的解决方案,推动方案落地。
包括英文材料
学历+
还有更多 •••
相关职位

logo of bytedance
社招A219775

团队介绍:字节跳动搜索团队主要负责抖音、国际化短视频、今日头条、西瓜视频等产品以及电商、生活服务等业务的搜索算法创新和架构研发工作。我们使用前沿的机器学习技术进行端到端建模并不断创新突破,同时专注于分布式系统、机器学习系统的构建和性能优化,从内存、Disk等优化到索引压缩、召回、排序等算法的探索,充分给同学们提供成长自我的机会。主要工作方向包括:1、探索前沿的NLP技术:从基础的分词、NER,文本、多模态预训练,到业务上的Query分析、基础相关性等,全链路应用深度学习模型,每个细节都充满挑战;2、跨模态匹配技术:在搜索中应用CV+NLP深度学习技术,实现多模态视频搜索强大的语义理解和检索能力;3、大规模流式机器学习技术:应用大规模机器学习,解决搜索中的推荐问题,让搜索更加个性化更加懂你;4、千亿级数据规模的架构:从大规模离线计算,分布式系统的性能、调度优化,到构建高可用、高吞吐和低延迟的在线服务的方方面面都有深入研究和创新;5、推荐技术:基于超大规模机器学习技术,构建业界领先的搜索推荐系统,对搜索推荐技术进行探索和创新。 课题介绍:随着大模型技术的快速发展,智能搜索领域迎来了新的机遇和挑战。传统搜索技术在面对海量数据、多模态信息以及用户复杂需求时,逐渐暴露出模型容量不足、语义理解能力有限、资源利用率低等问题。基于大模型的智能搜索构建旨在通过引入大模型技术,提升搜索系统的智能化水平,优化用户体验,并解决超大规模检索、复杂语义理解、资源高效利用等核心问题。具体目标包括: 1、探索大模型与排序算法的结合,提升个性化排序的精度和用户体验; 2、研究生成式检索算法,解决百亿乃至千亿级别候选库的超大规模检索问题; 3、利用大语言模型(LLM)提升复杂多义Query的搜索满意度。 1、参与搜索引擎(策略、模型)研发工作,支持抖音/今日头条/电商/番茄小说/红果短剧等具有数亿用户的产品,致力于为数亿用户提供数千亿精准搜索结果,打造极致的搜索体验; 2、探索前沿技术,探索大模型等创新技术在AI搜索场景的落地,参与搜索引擎、搜索大模型的改进,包括而不限于: 1)NLP、大模型:构建大规模高质量数据(数据建设、数据抓取与解析、数据合成等)、分词、NER,文本、多模态预训练、Query分析、基础相关性等,全链路结合应用机器学习/深度学习模型,探索搜索引擎与大模型、LLM、MLLM、多模态、机器学习、强化学习等前沿技术的结合,实现搜索引擎全链路革新并进行极致的系统优化,探索提升AI搜索引擎的能力,包含而不限于相关性、权威性、时效性、意图理解能力等;探索新的自然语言处理算法、信息检索技术、LLM适性索引、LLM相关性、生成式召回、排序大模型等,提高搜索引擎的准确性和智能化程度; 2)召回与排序:借助语义理解、个性化预估、机制设计等技术,解决超大规模的视频、商品、直播、POI等搜索业务下的召回、排序、重混排模型; 3)多模态、跨模态匹配技术:基于海量网页图文、抖音视频数据的大规模多模态预训练和视频分析技术,提升视觉搜索的使用体验;在搜索中结合CV+NLP深度学习技术,实现多模态、视频搜索、强大的语义理解和检索能力; 4)页面分析和摘要:从千亿视频/网页中提取最有价值的信息,进行结构化字段提取、智能摘要生成、转码等工作来优化搜索体验; 5)链接分析:从万亿链接中找出最有价值的网页,优化链接质量、索引质量、垃圾作弊识别、调度策略等。

更新于 2025-06-09北京
logo of bytedance
社招A259978A

团队介绍:广告业务原为商业产品与技术部门,为抖音集团的商业变现提供广告产品与技术,负责端到端大型广告系统建设,覆盖抖音、今日头条、西瓜视频、番茄小说、穿山甲等产品矩阵,践行"激发生意新可能"理念,致力于让营销更省心、更高效、更美好,推动商业的可持续增长,让不分体量、地域的企业及个体,都能通过数字化技术激发创造、驱动生意。连接广告主、用户及生态伙伴、成为开放共赢的全球最佳智能营销平台之一。在这里,你将投身建设面向未来的数字营销能力,接触到全球先进的商业产品架构、模型和算法,在互联网广告行业始终创新。 课题介绍: 1、核心技术架构: 1)下一代广告技术栈: 模型算法层:搭建基于强化学习的智能出价与流量预估系统,攻克深层转化场景下的数据稀疏、多源异构数据融合(延迟数据/埋点噪声/跨平台行为)等行业难题; 系统工程层:构建支持基于长序列特征的实时预估框架,研发支持动态创意组合的自动化投放引擎; AIGC融合层:建立文/图/视频多模态生成技术中台,实现从IP素材生成到智能投放的全链路闭环; 2)行业首创的AIGC解决方案: 正在搭建全球领先的"小说→漫剧"智能生产线,攻克三大技术堡垒: 多模态叙事引擎:研发支持角色一致性保持(Character-aware Diffusion)、分镜自动生成(Storyboard LLM)、动态运镜控制(Camera ControlNet)的复合型生成框架; 工业化工作流:构建支持分布式渲染、多版本AB测试、合规性审核的智能生产管线,实现日均千级素材产能; 投放增效系统:开发生成质量量化评估模型(QAGAN),建立素材生成-投放效果的反哺优化机制; 2、岗位挑战: 你将主导: 构建支持沿模型的混合推理框架,优化多卡并行下的生成效率; 设计跨模态对齐算法,提升文字指令到视觉元素的可控生成精度; 研发基于用户行为分析的智能素材变异系统,实现CTR提升30%+的个性化内容生成; 打造从内容生产到实时竞价的全自动化广告引擎; 3、我们期待这样的开拓者: 精通Diffusion Models技术栈,具有LoRA/ControlNet/T2I-Adapter等微调框架的实战调优经验; 熟悉多模态大模型(如VideoPoet、Sora等视频生成技术原理),具备跨模态表征学习研究背景; 拥有广告算法背景者优先,熟悉CVR预估、智能出价等核心模块与生成式AI的结合点; 出色的工程化能力,主导过至少一个完整AIGC项目的端到端落地(从模型训练到服务部署)。

更新于 2025-05-28北京
logo of bytedance
社招A249260A

团队介绍:我们是支持抖音集团广告业务算法技术中台团队Ads Core,致力于研发全球领先的在线广告优化算法,营造健康、互惠的广告生态,持续提升用户和客户体验,引领并推动行业算法的变革与创新。我们承担了抖音集团产品广告变现业务的基础算法策略和机制的改进与研究,涵盖抖音、今日头条、番茄小说等场景的商业化技术的支撑。 课题介绍:自动化投放,是在客户给定的营销诉求约束和素材商品资产下,平台通过感知投放状态信息(state)对投放6 要素做实时决策(action),和投放系统交互获得效果反馈(reward),来最大化客户投放效果。 过去自动化已经初步完成单Action model based 决策,在素材/出价/创编/探索预算等均有落地,但仍有以下问题:1)对历史序列建模 不够;2)仅对未来短期做决策,缺乏未来长周期action planning,不是长期最优; 3)多 action 之间缺乏组合,带来互相干扰和 label 收集不准等问题。 多客户投放竞价时,平台提供一套激励兼容且更高效的拍卖机制很重要,目前混排已经升级到 Generator-Evaluator 架构,但 G 阶段生成序列时还以暴力搜索和启发式规则为主,限制了搜索空间和效果上限,效率比较低。随着生成式模型发展,生成式对长序列建模和序列 planning生成 有显著优势,因此探索 将自动化投放和拍卖机制继续升级到生成式范式, 提升效果。

更新于 2025-05-28上海
logo of bytedance
社招A225433

团队介绍:Data-抖音团队,负责抖音APP的推荐算法、内容算法、对话算法及大数据工作,对接各场景业务(短视频,直播,图文,电商,社交,生态,投稿,消息,同城,生活服务,音乐,评论,内容理解&安全、智能对话等)。我们的工作涉及大规模推荐算法的优化、复杂约束的优化问题的解决、内容理解、LLM应用以及新业务方向探索、CV/NLP等多个学术领域的算法改进工作、对多种场景的推荐架构的设计和实现和对产品数据的复杂深入的分析工作。在这里,你可以深入钻研机器学习算法的改进和优化,探索工业界最领先的推荐系统架构和推荐大模型算法、可以通过使用最新的大模型等技术支持抖音的数字人、智能客服、AI工具等创新探索;可以通过对产品的深度理解和思考,将算法应用到业务中去;也可以通过对产品和内容生态的深度分析,影响产品未来的发展方向。 抖音作为全球领先的综合性内容平台,拥有庞大的用户群体和多元化的业务生态。在设计如此大规模的推荐系统时,面临社交网络复杂、电商用户兴趣跨域迁移困难、内容与用户冷启动样本稀疏、直播推荐多目标融合效能不足、兴趣重复密集探索不足等多重挑战。 具体表现为:用户社交网络规模达万亿级,传统图算法难以高效地建模动态社交行为与内容消费的耦合关系;用户从内容兴趣到电商兴趣的迁移依赖跨域多模态理解与动态映射,现有方法难以捕捉潜在电商转化信号;新内容和新低活用户冷启动阶段样本量少,传统协同过滤与内容推荐方法泛化能力弱;直播推荐需实时融合点击、互动、消费等多目标信号,但启发式规则难以平衡用户长期体验与短期价值;兴趣密集追打问题严重,新兴趣探索效率不高。 1、社交网络增强的跨域兴趣建模:结合图神经网络(GNN)与大语言模型(LLM),构建用户全生命周期行为图谱,融合社交关系、内容互动与电商行为,挖掘社交网络中的社团结构与跨域兴趣传播路径; 2、兴趣迁移与转化信号捕捉:通过跨域对比学习与对抗生成技术,构建内容兴趣到电商兴趣的隐式映射网络,结合强化学习动态调控探索与利用,兼顾推荐精准性与多样性; 3、多模态小样本冷启动优化:利用LLM的Few-shot推理能力,通过内容语义理解与外部知识增强,设计元学习框架实现新ID特征与泛化特征的联合表征,缓解冷启动数据稀疏问题; 4、多目标融合与长短期价值平衡:基于大模型的泛化能力与长上下文感知,统一建模直播多目标(点击、时长、打赏等)的分布偏差与动态权重,设计个性化融合策略,替代传统多阶段漏斗架构,提升实时推荐效率; 5、兴趣密集与兴趣探索:通过用户兴趣画像建模与强化学习技术,实时捕捉用户消费与兴趣变化,缓解兴趣密集问题,为用户探索新的兴趣。

更新于 2025-06-05杭州