logo of bytedance

字节跳动大模型算法实习生-国际支付

实习兼职A31654地点:深圳状态:招聘

任职要求


1、硕士及以上学位在读,人工智能、计算机、模式识别等相关专业;
2、具有优秀的编程基础,熟练使用Python/C++等至少一种编程语言,熟练使用TensorFlow/PyTorch等至少一种深度学习框架,ACM/ICPC、NOI/IOI、TopCoder、Kaggle等比赛获奖者优先;有NLP、CV、数据处…
登录查看完整任职要求
微信扫码,1秒登录

工作职责


日常实习:面向全体在校生,为符合岗位要求的同学提供为期3个月及以上的项目实践机会。
团队介绍:国际支付,立足于为字节跳动国际化业务提供专业的支付和金融服务,专注于全球支付产品线的质量和效率,确保为国际产品提供高度可靠和稳定的服务,建立国际支付产品和能力,同时在高效助力业务快速拓展的同时,打造行业领先的支付和金融产品能力。团队当前所提供的产品和服务,遍布全球多个国家和地区,团队拥有丰富的国际化产品研发经验;同时这里有全球超大规模的支付网络;覆盖多业务场景的海外钱包及金融产品解决方案;围绕分布式一致性、高并发、高可用、资金安全在内的核心技术能力攻坚;LLM等前沿AI技术在支付&金融服务中的探索、研发和应用。另外,我们在全球设立团队,团队同学背景多元,不同的思维方式,打造了一个多元、碰撞、融合、包容的工作环境。我们邀请你来此成长、专研,发掘无限的潜力,一起应对技术和业务以及跨国合作上的挑战,还有跨文化交流机会在等你!

1、深入理解业务需求,利用SFT、RLVR、AgentRL等多种后训练技术,优化智能催收、智能客服等场景下信息抽取、意图分类、工具调用等多种模型的效果,提升业务效果上限;
2、密切跟进LLM领域最新研究成果,积极参与新业务的探索研究,结合对业务场景的充分理解,寻找最佳解决方案。
包括英文材料
学历+
模式识别+
Python+
C+++
TensorFlow+
PyTorch+
深度学习+
ICPC+
还有更多 •••
相关职位

logo of bytedance
实习A160052

团队介绍:国际化内容安全算法研究团队致力于为字节跳动国际化产品的用户维护安全可信赖环境,通过开发、迭代机器学习模型和信息系统以更早、更快发掘风险、监控风险、响应紧急事件,团队同时负责产品基座大模型的研发,我们在研发过程中需要解决数据合规、模型推理能力、多语种性能优化等方面的问题,从而为平台上的内容审核、搜索、推荐等多项业务提供安全合规,性能优越的基座模型。 课题介绍: 背景:近年来,大规模语言模型(Large Language Models, LLM)在自然语言处理和人工智能的各个领域都取得了显著的进展。这些模型展示了强大的能力,例如在生成语言、回答问题、翻译文本等任务上表现优异。然而,LLM 的推理能力仍有很大的提升空间。在现有的研究中,通常依赖于大量的监督微调(Supervised Fine-Tuning, SFT)数据来增强模型的推理性能。然而,高质量 SFT 数据的获取成本高昂,这对模型的开发和应用带来了极大的限制。为了提升推理能力,OpenAI 的 o1 系列模型通过增加思维链(Chain-of-Thought, CoT)的推理过程长度取得了一定的成功。这种方法虽然有效,但在实际测试时如何高效地进行扩展仍是一个开放的问题。一些研究尝试使用基于过程的奖励模型(Process-based Reward Model, PRM)、强化学习(Reinforcement Learning, RL)以及蒙特卡洛树搜索算法(Monte Carlo Tree Search, MCTS)等方法来解决推理问题,然而这些方法尚未能达到 OpenAI o1 系列模型的通用推理性能水平。最近deepseek r1在论文中提到通过纯强化学习的方法,可以使得 LLM 自主发展推理能力,而无需依赖昂贵的 SFT 数据。这一系列的工作都揭示着强化学习对LLM的巨大潜力。 1、Reward模型的设计:在强化学习过程中,设计一个合适的reward模型是关键。Reward模型需要准确地反映推理过程的效果,并引导模型逐步提升其推理能力。这不仅要求对不同任务精准设定评估标准,还要确保reward模型能够在训练过程中动态调整,以适应模型性能的变化和提高; 2、稳定的训练过程:在缺乏高质量SFT数据的情况下,如何确保强化学习过程中的稳定训练是一个重大挑战。强化学习过程通常涉及大量的探索和试错,这可能导致训练不稳定甚至模型性能下降。需要开发具有鲁棒性的训练方法,以保证模型在训练过程中的稳定性和效果; 3、如何从数学和代码任务上拓展到自然语言任务上:现有的推理强化方法主要应用在数学和代码这些CoT数据量相对丰富的任务上。然而,自然语言任务的开放性和复杂性更高,如何将成功的RL策略从这些相对简单的任务拓展到自然语言处理任务上,要求对数据处理和RL方法进行深入的研究和创新,以实现跨任务的通用推理能力; 4、推理效率的提升:在保证推理性能的前提下,提升推理效率也是一个重要挑战。推理过程的效率直接影响到模型在实际应用中的可用性和经济性。可以考虑利用知识蒸馏技术,将复杂模型的知识传递给较小的模型,以减少计算资源消耗。另外,使用长思维链(Long Chain-of-Thought, Long-CoT)技术来改进短思维链(Short-CoT)模型,也是一种潜在的方法,以在保证推理质量的同时提升推理速度。

更新于 2025-03-05北京
logo of bytedance
实习A90088

团队介绍:国际化内容安全算法研究团队致力于为字节跳动国际化产品的用户维护安全可信赖环境,通过开发、迭代机器学习模型和信息系统以更早、更快发掘风险、监控风险、响应紧急事件,团队同时负责产品基座大模型的研发,我们在研发过程中需要解决数据合规、模型推理能力、多语种性能优化等方面的问题,从而为平台上的内容审核、搜索、推荐等多项业务提供安全合规,性能优越的基座模型。 课题介绍: 背景:近年来,大规模语言模型(Large Language Models, LLM)在自然语言处理和人工智能的各个领域都取得了显著的进展。这些模型展示了强大的能力,例如在生成语言、回答问题、翻译文本等任务上表现优异。然而,LLM 的推理能力仍有很大的提升空间。在现有的研究中,通常依赖于大量的监督微调(Supervised Fine-Tuning, SFT)数据来增强模型的推理性能。然而,高质量 SFT 数据的获取成本高昂,这对模型的开发和应用带来了极大的限制。为了提升推理能力,OpenAI 的 o1 系列模型通过增加思维链(Chain-of-Thought, CoT)的推理过程长度取得了一定的成功。这种方法虽然有效,但在实际测试时如何高效地进行扩展仍是一个开放的问题。一些研究尝试使用基于过程的奖励模型(Process-based Reward Model, PRM)、强化学习(Reinforcement Learning, RL)以及蒙特卡洛树搜索算法(Monte Carlo Tree Search, MCTS)等方法来解决推理问题,然而这些方法尚未能达到 OpenAI o1 系列模型的通用推理性能水平。最近deepseek r1在论文中提到通过纯强化学习的方法,可以使得 LLM 自主发展推理能力,而无需依赖昂贵的 SFT 数据。这一系列的工作都揭示着强化学习对LLM的巨大潜力。 1、Reward模型的设计:在强化学习过程中,设计一个合适的reward模型是关键。Reward模型需要准确地反映推理过程的效果,并引导模型逐步提升其推理能力。这不仅要求对不同任务精准设定评估标准,还要确保reward模型能够在训练过程中动态调整,以适应模型性能的变化和提高; 2、稳定的训练过程:在缺乏高质量SFT数据的情况下,如何确保强化学习过程中的稳定训练是一个重大挑战。强化学习过程通常涉及大量的探索和试错,这可能导致训练不稳定甚至模型性能下降。需要开发具有鲁棒性的训练方法,以保证模型在训练过程中的稳定性和效果; 3、如何从数学和代码任务上拓展到自然语言任务上:现有的推理强化方法主要应用在数学和代码这些CoT数据量相对丰富的任务上。然而,自然语言任务的开放性和复杂性更高,如何将成功的RL策略从这些相对简单的任务拓展到自然语言处理任务上,要求对数据处理和RL方法进行深入的研究和创新,以实现跨任务的通用推理能力; 4、推理效率的提升:在保证推理性能的前提下,提升推理效率也是一个重要挑战。推理过程的效率直接影响到模型在实际应用中的可用性和经济性。可以考虑利用知识蒸馏技术,将复杂模型的知识传递给较小的模型,以减少计算资源消耗。另外,使用长思维链(Long Chain-of-Thought, Long-CoT)技术来改进短思维链(Short-CoT)模型,也是一种潜在的方法,以在保证推理质量的同时提升推理速度。

更新于 2025-03-05上海
logo of bytedance
实习A243374

ByteIntern:面向2026届毕业生(2025年9月-2026年8月期间毕业),为符合岗位要求的同学提供转正机会。 团队介绍:国际商业化产品与技术团队支持字节跳动国际产品的广告产品与变现技术。我们负责end2end的大型广告系统建设,为客户提供商业推广方式与方案。我们的团队遍布北京、上海、美国、新加坡等地,在这里你将有机会开阔自己的国际化视野,接触到全球领先的商业产品架构、模型和算法,并有机会参与并推动互联网广告行业的创新和变革。 1、负责T2V、T2I、LLM、MultiModal-LLM等模型的效率优化,包括但不限于模型蒸馏、裁剪、量化、算子优化、链路设计等结合业务需求,将GPU性能发挥到极致; 2、探索极致的视频生成效果与视频生成性能,打造近实时的视频生成系统,并支持相关技术在数字人、商品视频等场景落地,赋能商业化场景创意制作及优化; 3、参与GPT&Diffusion等生成式模型相关算法研发与优化,跟进计算机视视觉和自然语言处理领域的前沿技术研究。

更新于 2025-02-24上海
logo of bytedance
实习A181943A

团队介绍:国际商业化产品与技术团队支持字节跳动国际产品的广告产品与变现技术。我们负责end2end的大型广告系统建设,为客户提供商业推广方式与方案。我们的团队遍布北京、上海、美国、新加坡等地,在这里你将有机会开阔自己的国际化视野,接触到全球领先的商业产品架构、模型和算法,并有机会参与并推动互联网广告行业的创新和变革。 课题背景: 随着LLM大模型和多模态技术的快速发展,给下一代广告系统带来了重大机会,LLM可以根据广告平台的投放经验和数据,并且结合对广告大模型的理解,通过Reflection、RLHF等技术构建与真实环境交互的Agent,从而实现专家级别的广告账号管理,实现最高的ROI。同时广告Agent可探索根据用户的兴趣,个性化实现在线素材生产,最终实现广告素材和创意样式的千人千面,极大撬动用户和商品的匹配效率。 课题挑战: 现有的LLM在垂直广告营销领域上尚不能给出专业且能提升效果的专业知识,并且Agent无法很好的操作和里面广告系统。在创意方面,视频生成模型质量还不能满足广告生成的要求,以及和投放系统结合千人千面的个性化效果。

更新于 2025-03-03北京