高德地图高德-推荐召排系统后端开发工程师-AI 专项
任职要求
● 3年以上个性化搜索、推荐或广告系统后端研发经验,具备高并发、高可用分布式系统的架构设计与稳定性保障实战经验; ● 精通 Linux 开发环境,熟练掌握 C++ / Go / J…
工作职责
● 负责搜推系统的召回、排序整体架构设计与工程实现,推动策略功能持续演进,高效支撑多样化的业务场景需求; ● 设计高扩展性系统架构,融合传统搜推体系与基于 LLM Agent 的新一代智能搜推架构,打造面向未来的搜推技术底座; ● 持续优化系统在吞吐量、响应延迟、稳定性(容灾降级)等方面的表现,推动整体性能达到行业领先水平; ● 抽象多业务场景中的共性模式,推进系统向插件化、标准化方向演进,提升复用性、可维护性与迭代效率; ● 与产品、算法、数据团队紧密协作,打通数据流转、系统对接、监控追踪等端到端链路,保障搜推系统稳定、高效交付。
岗位课题: 【用户理解与因果推理】 应用大模型的逻辑与因果推理能力,深度挖掘用户偏好、意图与需求之间的复杂关系,构建能够理解用户“潜台词”的下一代推荐引擎。 【生成式召回与排序新范式】 研究并实践基于生成式模型(Generative Models)的推荐框架,探索从“判别式打分”到“生成式候选”的技术变革,重构推荐系统的召回与排序链路。 【可解释与对话式推荐系统】 利用大模型的自然语言交互与生成能力,构建支持多轮对话、主动询问和理由解释的推荐系统,提升用户信任度与交互体验。 【大模型推荐系统下的大模型优化】 专注于大模型在超大规模、高并发推荐场景下的挑战,驱动前沿算法的商业化落地。 【用户行为序列的模态融合与表征】 将海量、异构的用户行为序列(点击、浏览、转化)视为一种独特的“行为模态”,探索其与文本、图像等多模态信息的融合方法,为大模型注入更深层次的用户理解力。 课题项目背景: 当前,大模型已经在许多领域成功落地并产生了深远影响。对于推荐而言,我们认为大模型技术在深入了解用户意图乃至重塑推荐系统等诸多方面均潜藏巨大的价值。因此,我们希望能够充分利用大模型能力与知识,解决当前推荐系统的冷启动、缺乏解释性与泛化性等问题,打造下一代推荐系统,并将应用于以下方向: 1、利用大模型技术全面升级淘宝推荐的召排能力并在主场景落地取得收益; 2、结合大模型技术,探索全新的淘宝推荐交互方式,为推荐场景找到新的方向。 成长资源 1、实习同学将会与工业界经验丰富的师兄师姐合作,充分了解大规模推荐系统的运行方式,努力做出能够真实影响海量用户的工作; 2、鼓励发挥个人的知识与才能,在大模型与推荐系统相结合的蓝海领域大胆探索,提升团队与个人的影响力,做出引领业内方向的代表作; 3、充分保障探索所需的离在线资源,并给予充足的时间与空间。 岗位职责: 在这里,你将有机会接触海量用户行为数据,并通过前沿算法为淘宝用户提供个性化购物体验。同时,可以与有着丰富工业界经验的师兄师姐一起探索大模型技术在推荐系统中的应用。通过这段实习经验,你不仅能够深入了解国内top级应用的推荐场景,更能够有机会在大模型技术红利背景下,充分发挥自己的聪明才智重新定义与塑造下一代推荐系统,打造团队与个人的影响力。
岗位课题: 【用户理解与因果推理】 应用大模型的逻辑与因果推理能力,深度挖掘用户偏好、意图与需求之间的复杂关系,构建能够理解用户“潜台词”的下一代推荐引擎。 【生成式召回与排序新范式】 研究并实践基于生成式模型(Generative Models)的推荐框架,探索从“判别式打分”到“生成式候选”的技术变革,重构推荐系统的召回与排序链路。 【可解释与对话式推荐系统】 利用大模型的自然语言交互与生成能力,构建支持多轮对话、主动询问和理由解释的推荐系统,提升用户信任度与交互体验。 【大模型推荐系统下的大模型优化】 专注于大模型在超大规模、高并发推荐场景下的挑战,驱动前沿算法的商业化落地。 【用户行为序列的模态融合与表征】 将海量、异构的用户行为序列(点击、浏览、转化)视为一种独特的“行为模态”,探索其与文本、图像等多模态信息的融合方法,为大模型注入更深层次的用户理解力。 课题项目背景: 当前,大模型已经在许多领域成功落地并产生了深远影响。对于推荐而言,我们认为大模型技术在深入了解用户意图乃至重塑推荐系统等诸多方面均潜藏巨大的价值。因此,我们希望能够充分利用大模型能力与知识,解决当前推荐系统的冷启动、缺乏解释性与泛化性等问题,打造下一代推荐系统,并将应用于以下方向: 1、利用大模型技术全面升级淘宝推荐的召排能力并在主场景落地取得收益; 2、结合大模型技术,探索全新的淘宝推荐交互方式,为推荐场景找到新的方向。 成长资源 1、实习同学将会与工业界经验丰富的师兄师姐合作,充分了解大规模推荐系统的运行方式,努力做出能够真实影响海量用户的工作; 2、鼓励发挥个人的知识与才能,在大模型与推荐系统相结合的蓝海领域大胆探索,提升团队与个人的影响力,做出引领业内方向的代表作; 3、充分保障探索所需的离在线资源,并给予充足的时间与空间。 岗位职责: 在这里,你将有机会接触海量用户行为数据,并通过前沿算法为淘宝用户提供个性化购物体验。同时,可以与有着丰富工业界经验的师兄师姐一起探索大模型技术在推荐系统中的应用。通过这段实习经验,你不仅能够深入了解国内top级应用的推荐场景,更能够有机会在大模型技术红利背景下,充分发挥自己的聪明才智重新定义与塑造下一代推荐系统,打造团队与个人的影响力。
1、生成式:研发生成式召排一体化大模型框架,实现大模型技术在工业级推荐系统的深度改造; 2、前沿技术探索与预研:开展大模型先进技术和广告推荐人货匹配结合的创新研究,包括不限于:大模型基础研究和深度性能优化,用户个性化购物逻辑及意图推理,主动型知识性推荐,大模型在工业级广告系统的落地部署。