高德地图高德-多模态大模型算法-路线生成
任职要求
1. 大模型相关专业的研究生或以上学历; 2. 熟悉多模态大模型相关的算法和技术,熟悉大模型后训练、SFT、RL、部署; 3. 顶级人工智能学术会议或期刊上发表过论文者优先,有相关高…
工作职责
【岗位亮点】 打造现象级AI产品:你的算法将服务数亿用户,利用行业最丰富的地理数据,扩展语义理解与路线生成的边界 前沿技术实践场:深度参与垂类多模态大模型的训练与优化,探索MLLM+地图理解的无限可能 真实场景大挑战:面对MLLM在地图任务下语义和空间的双重挑战,构建行业标杆级模型 【团队成就】 我们团队致力于构建下一代核心智能驾驶体验,在过去四年持续创造多个突破性创新产品技术。 智能出行开拓者:连续4年推出行业标杆产品,包括: 2022年 红绿灯倒计时黑科技 (拯救千万路怒症的神级操作) 2023年 V2X车车对话系统 (让汽车学会"社牛"沟通) 2024年 AI领航红绿灯 (比驾校教练更懂路的老司机) 2025年 TrafficVLM-Agent 上线 (高德地图“天眼”功能) 2025年 RouteVLM-Agent上线 (路线生成的无限可能) 【你将参与】 1. 用AI解锁出行新玩法:基于海量地图数据与用户场景,研发支持从“用户任意query”到一条“用户偏好&地理空间对齐的可行路线”的规划大模型 2. 打造行业领先的大模型应用:通过Prompt优化、SFT微调、强化学习等技术,让大模型真正理解复杂出行需求中的时空语义关系 3. 构建智能出行知识库:主导多模态数据处理,建立覆盖地图理解、实时路况分析、时空语义推理的千万级出行数据库 4. 定义未来出行方式:探索大模型在动态路线规划、智能交互导航等场景的突破性应用,持续输出行业领先的技术方案 【加入我们,你将获得】 与行业顶尖专家共事,参与日均百亿级请求的核心系统研发 完善的技术成长体系,包括大模型专项培训、季度技术workshop
我们是高德视觉技术中心,驱动高德实现高精度地图、三维重建、LLM/VLM,AI Agent等核心技术,持续突破自动驾驶、AR导航、具身智能、推广搜和生活服务等领域的技术边界。我们团队致力于利用三维重建、生成式世界模型、多模态大模型等技术打通虚拟与现实,探索空间智能技术路线,让算法在真实应用中产生即时经济价值与社会影响力。 团队gihub主页:https://github.com/amap-cvlab 岗位职责: 1. 3D动/静态生产:利用三维重建、生成模型、多模态大模型对单图、视频完成动态物体/静态场景重建、生成、编辑,并得到可交互的3D、长时序视频; 2. 世界模型构建:结合具身智能、自动驾驶等数据探索空间智能的统一范式,完成环境感知、智能体预测、决策规划等任务并得到未来状态和未来传感器信息,为强化学习提供基座; 3. 产线落地与性能优化:与具身智能、自动驾驶、智能导航等业务协同,完善仿真数据链路; 4. 跟踪学术界和工业界在生成式AI/世界模型相关领域的最新进展,保持公司在该领域的技术领先地位。
团队介绍:商业信任与安全算法团队,聚焦于通过人工智能技术(包括但不限于NLP/CV/多模态/图/大模型)识别和治理问题广告内容和问题广告主,助力降低虚假宣传、不良暗示等内容发生概率,提升广告质量。该方向也是行业共同关注、长期研究的方向,在这里你可以基于平台能力及内容,深耕算法优化,为商业化各业务提供安全解决方案。 课题介绍:智能审核业务比较复杂,随着审核技术的不断演进,各个领域面临着新的风险问题和对抗形式,这对大模型的应用提出了新的挑战。例如,在审核业务中,涉及审核规则变更、长文本、长时序、多语言、少样本和AIGC生成对抗等问题时,现有的开源大模型表现往往不尽人意。因此,针对这些挑战,我们亟需研发专门针对智能审核的大模型,以提升其在治理中的有效性和适应性。特别的,针对业务特点,我们需要探索高质量的数据自动生成、高效的MOE Embedding、Auto-Prompt生成、高质量 COT输出、大模型知识蒸馏等。此外,该模型应能够满足审核业务的需求,实现高准确率的自主决策和可解释性的COT生成,显著减少误判。针对动态变化的审核规则变更,它能够通过RAG模块自动检索类似的审核案例,将复杂的审核规则变更分解为简单的原子任务,自动拆分出驳回和豁免原子任务,并自动调用相应的Tools来解决这些任务,从而建立“知道拒绝并且知道为何拒绝”的业内领先智能审核系统。最终,大模型智能审核系统的审核效果需要接近或者超过人工审核,往全机审的路线上演进。 1、模态融合能力:提升文本、音频、图像、视频和直播等多模态的细粒度理解能力,实现高准确率的自主决策和可解释性的COT生成; 2、Few-Shot能力:探索多语言、长时序和少样本问题,增强Few-Shot和Zero-Shot能力,针对多变的业务规则具备复杂指令和Auto-Prompt生成能力; 3、攻防对抗能力:研究AIGC图像视频的判别,增强审核大模型对隐晦、抽象的生成式内容的攻防对抗能力; 4、Agent能力:具备调用RAG模块,使用Tools,和Auto-Planning能力;提升大模型的动态推理和反思能力。
团队介绍:Data-电商-平台治理算法团队,通过优化算法,和业务团队协作,对字节旗下的电商产品进行全方位的质量和生态的治理,既包括风险、违规和低质问题的打击,也包括健康电商生态的建设和优化,在最大程度的优化平台治理的效果的同时提升治理的工作效率,降低成本。另外一方面,平台治理算法团队致力于攻坚前沿的AI技术,以技术驱动推动业务的变革和发展,领域涉及广泛,包括但不限于NLP/CV/多模态/大模型/图算法/序列算法等。 课题介绍: 背景:电商智能审核业务比较复杂,随着审核技术的不断演进,各个领域面临着新的风险问题和对抗形式,这对大模型的应用提出了新的挑战。例如,在电商审核业务中,涉及审核PBR变更、长文本、长时序、多语言、少样本和AIGC生成对抗等问题时,现有的开源大模型表现往往不尽人意。因此,针对这些挑战,我们亟需研发专门针对电商智能审核的大模型,以提升其在电商治理中的有效性和适应性。特别的,针对电商业务特点,我们需要探索高质量的数据自动生成、高效的MOE Embedding、Auto-Prompt生成、高质量 COT输出、大模型知识蒸馏等。此外,该模型应能够满足电商审核业务的需求,实现高准确率的自主决策和可解释性的COT生成,显著减少误判。针对动态变化的审核PBR变更,它能够通过RAG模块自动检索类似的审核案例,将复杂的审核PBR分解为简单的原子任务,自动拆分出驳回和豁免原子任务,并自动调用相应的Tools来解决这些任务,从而建立“知道拒绝并且知道为何拒绝”的业内领先智能审核系统。最终,大模型智能审核系统的审核效果需要接近或者超过人工审核,往全机审的路线上演进。 研究方向:模态融合能力:提升文本、音频、图像、视频和直播等多模态的细粒度理解能力,实现高准确率的自主决策和可解释性的COT生成;Few-Shot能力:探索电商多语言、长时序和少样本问题,增强Few-Shot和Zero-Shot能力,针对多变的业务规则具备复杂指令和Auto-Prompt生成能力;攻防对抗能力:研究AIGC图像视频的判别,增强审核大模型对隐晦、抽象的生成式内容的攻防对抗能力;Agent能力:具备调用RAG模块,使用Tools,和Auto-planning能力;提升大模型的动态推理和反思能力。 1、深入理解电商业务,探索基于大模型、多模态模型,持续提升商家/达人在准入、发品、售后等各个业务场景的风险识别效果; 2、提升商品治理审核智能化水平,迭代优化治理大模型,提升大模型对治理规则和商品信息的理解,实现高准高召的问题识别和自动处置; 3、负责强化电商场景下,大模型推理和反思能力,通过商品业务域SFT、高质量Cot、强化学习、数据合成等技术方案,提升商品治理大模型底座能力; 4、参与构建挖掘电商直播、商品、商家和带货主播等多种实体的数据,对大规模网络/海量特征序列进行建模,支撑商家、达人分类/风险团伙挖掘等业务场景解决问题,并为商家/达人治理提供支持; 5、参与构建大规模的图存储和图学习平台,完善电商社区内商家/商品/达人/视频内容的关系建设,构建电商实体通用表征能力,赋能治理业务; 6、建设售后服务MLLM基座大模型,并利用RAG/Agent/RL等技术,解决复杂场景下对体验问题的理解能力。
团队介绍:Data-电商-平台治理算法团队,通过优化算法,和业务团队协作,对字节旗下的电商产品进行全方位的质量和生态的治理,既包括风险、违规和低质问题的打击,也包括健康电商生态的建设和优化,在最大程度的优化平台治理的效果的同时提升治理的工作效率,降低成本。另外一方面,平台治理算法团队致力于攻坚前沿的AI技术,以技术驱动推动业务的变革和发展,领域涉及广泛,包括但不限于NLP/CV/多模态/大模型/图算法/序列算法等。 课题介绍: 背景:电商智能审核业务比较复杂,随着审核技术的不断演进,各个领域面临着新的风险问题和对抗形式,这对大模型的应用提出了新的挑战。例如,在电商审核业务中,涉及审核PBR变更、长文本、长时序、多语言、少样本和AIGC生成对抗等问题时,现有的开源大模型表现往往不尽人意。因此,针对这些挑战,我们亟需研发专门针对电商智能审核的大模型,以提升其在电商治理中的有效性和适应性。特别的,针对电商业务特点,我们需要探索高质量的数据自动生成、高效的MOE Embedding、Auto-Prompt生成、高质量 COT输出、大模型知识蒸馏等。此外,该模型应能够满足电商审核业务的需求,实现高准确率的自主决策和可解释性的COT生成,显著减少误判。针对动态变化的审核PBR变更,它能够通过RAG模块自动检索类似的审核案例,将复杂的审核PBR分解为简单的原子任务,自动拆分出驳回和豁免原子任务,并自动调用相应的Tools来解决这些任务,从而建立“知道拒绝并且知道为何拒绝”的业内领先智能审核系统。最终,大模型智能审核系统的审核效果需要接近或者超过人工审核,往全机审的路线上演进。 研究方向:模态融合能力:提升文本、音频、图像、视频和直播等多模态的细粒度理解能力,实现高准确率的自主决策和可解释性的COT生成;Few-Shot能力:探索电商多语言、长时序和少样本问题,增强Few-Shot和Zero-Shot能力,针对多变的业务规则具备复杂指令和Auto-Prompt生成能力;攻防对抗能力:研究AIGC图像视频的判别,增强审核大模型对隐晦、抽象的生成式内容的攻防对抗能力;Agent能力:具备调用RAG模块,使用Tools,和Auto-planning能力;提升大模型的动态推理和反思能力。 1、深入理解电商业务,探索基于大模型、多模态模型,持续提升商家/达人在准入、发品、售后等各个业务场景的风险识别效果; 2、提升商品治理审核智能化水平,迭代优化治理大模型,提升大模型对治理规则和商品信息的理解,实现高准高召的问题识别和自动处置; 3、负责强化电商场景下,大模型推理和反思能力,通过商品业务域SFT、高质量Cot、强化学习、数据合成等技术方案,提升商品治理大模型底座能力; 4、参与构建挖掘电商直播、商品、商家和带货主播等多种实体的数据,对大规模网络/海量特征序列进行建模,支撑商家、达人分类/风险团伙挖掘等业务场景解决问题,并为商家/达人治理提供支持; 5、参与构建大规模的图存储和图学习平台,完善电商社区内商家/商品/达人/视频内容的关系建设,构建电商实体通用表征能力,赋能治理业务; 6、建设售后服务MLLM基座大模型,并利用RAG/Agent/RL等技术,解决复杂场景下对体验问题的理解能力。