logo of amap

高德地图算法实习生(大模型与生成式推荐方向)

实习兼职高德研究型实习生地点:北京状态:招聘

任职要求


职位要求:
职位要求(Job Requirements):
学历背景: 计算机、人工智能、数学、电子信息、自动化等相关专业,硕士及以上学历在读(2025/2026年及以后毕业),能够保证连续实习 3 个月以上,每周出勤 4 天以上者优先。
编程基础: 具备扎实的编程功底,熟练掌握 Python,了解 C++Java;熟悉数据结构算法,代码风格良好。
框架技能: 至少熟悉一种主流深度学习框架(PyTorch / TensorFlow),有实际的模型训练和调试经验。
领域知识(满足其一即可):
熟悉 NLP 领域,了解 Transformer 架构,有 LLM 微调(LoRA/P-tuning)或 RAG 实践经验者优先。
熟悉推荐系统基本流程(召回/排序),了…
登录查看完整任职要求
微信扫码,1秒登录

工作职责


职位描述
你将加入高德地图核心算法团队,在算法专家的指导下探索大模型(LLM/多模态)与推荐系统的深度结合。你将有机会接触亿级用户规模的真实业务场景,参与从前沿技术研究到工程落地的全过程。

你将参与或负责以下工作内容(包括但不限于):

1.用户兴趣预测:基于生成式大模型解析用户行为与商品/内容语义,构建⽤户需求预测模型,提升推荐场景的转化与⽤户体验;
2.端到端⽣成式链路:探索端到端生成式范式,替代传统多阶段漏斗链路流程,基于强化学习融合业务逻辑,建设出具备⾼效scaling能力的生成式算法新链路;
3.重排范式创新:借鉴生成式大模型技术构建生成式重排创新范式,通过Reward model + 强化学习实现端到端序列整体生态价值建模;
4.深入研究和理解大模型预训练、微调与强化学习技术,结合搜推业务目标持续优化模型效果。
包括英文材料
学历+
Python+
C+++
Java+
数据结构+
算法+
深度学习+
PyTorch+
TensorFlow+
NLP+
Transformer+
大模型+
还有更多 •••
相关职位

logo of amap
实习高德研究型实习生

职位描述(Job Description): 你将加入高德地图核心算法团队,在资深算法专家的指导下,探索大模型(LLM/多模态)与推荐系统的深度结合。你将有机会接触亿级用户规模的真实业务场景,参与从前沿技术研究到工程落地的全过程。 你将参与或负责以下工作内容(包括但不限于): 大模型前沿探索: 参与 Qwen-VL、InternVL 等多模态大模型及 LLM 在高德业务场景下的微调(SFT)、对齐(RLHF)及 Prompt 优化,探索生成式推荐的新范式。 推荐算法优化: 深入理解高德核心业务(如首页推荐、目的地预测),协助优化召回、排序(粗排/精排)、重排等核心模块,提升 CTR、CVR 等关键业务指标。 用户行为建模: 利用深度学习技术挖掘用户长短期兴趣,结合高德特有的时空数据,进行下一站预测和场景化意图推理。 多模态内容理解: 处理海量图像与文本数据,构建高质量的内容表征体系,解决冷启动问题,提升内容分发效率。 数据分析与实验: 深入分析业务数据,设计并跟进 AB 实验,通过数据驱动的方式验证算法效果并进行迭代。 你将获得: 核心业务场景: 接触高德亿级日活用户的真实数据,解决极具挑战性的时空推荐问题。 大牛导师带教: 资深算法专家一对一指导,提供清晰的成长路径和技术辅导。 前沿技术落地: 拥有充足的算力资源(GPU集群),亲手将大模型技术落地到实际产品中。 转正机会: 表现优异者可获得校招转正 Offer 或 绿色通道面试资格。

更新于 2025-12-10北京
logo of alibaba
实习淘天集团T-St

岗位课题: 【用户理解与因果推理】 应用大模型的逻辑与因果推理能力,深度挖掘用户偏好、意图与需求之间的复杂关系,构建能够理解用户“潜台词”的下一代推荐引擎。 【生成式召回与排序新范式】 研究并实践基于生成式模型(Generative Models)的推荐框架,探索从“判别式打分”到“生成式候选”的技术变革,重构推荐系统的召回与排序链路。 【可解释与对话式推荐系统】 利用大模型的自然语言交互与生成能力,构建支持多轮对话、主动询问和理由解释的推荐系统,提升用户信任度与交互体验。 【大模型推荐系统下的大模型优化】 专注于大模型在超大规模、高并发推荐场景下的挑战,驱动前沿算法的商业化落地。 【用户行为序列的模态融合与表征】 将海量、异构的用户行为序列(点击、浏览、转化)视为一种独特的“行为模态”,探索其与文本、图像等多模态信息的融合方法,为大模型注入更深层次的用户理解力。 课题项目背景: 当前,大模型已经在许多领域成功落地并产生了深远影响。对于推荐而言,我们认为大模型技术在深入了解用户意图乃至重塑推荐系统等诸多方面均潜藏巨大的价值。因此,我们希望能够充分利用大模型能力与知识,解决当前推荐系统的冷启动、缺乏解释性与泛化性等问题,打造下一代推荐系统,并将应用于以下方向: 1、利用大模型技术全面升级淘宝推荐的召排能力并在主场景落地取得收益; 2、结合大模型技术,探索全新的淘宝推荐交互方式,为推荐场景找到新的方向。 成长资源 1、实习同学将会与工业界经验丰富的师兄师姐合作,充分了解大规模推荐系统的运行方式,努力做出能够真实影响海量用户的工作; 2、鼓励发挥个人的知识与才能,在大模型与推荐系统相结合的蓝海领域大胆探索,提升团队与个人的影响力,做出引领业内方向的代表作; 3、充分保障探索所需的离在线资源,并给予充足的时间与空间。 岗位职责: 在这里,你将有机会接触海量用户行为数据,并通过前沿算法为淘宝用户提供个性化购物体验。同时,可以与有着丰富工业界经验的师兄师姐一起探索大模型技术在推荐系统中的应用。通过这段实习经验,你不仅能够深入了解国内top级应用的推荐场景,更能够有机会在大模型技术红利背景下,充分发挥自己的聪明才智重新定义与塑造下一代推荐系统,打造团队与个人的影响力。

更新于 2025-08-04北京|杭州
logo of alibaba
实习淘天集团2026

岗位课题: 【用户理解与因果推理】 应用大模型的逻辑与因果推理能力,深度挖掘用户偏好、意图与需求之间的复杂关系,构建能够理解用户“潜台词”的下一代推荐引擎。 【生成式召回与排序新范式】 研究并实践基于生成式模型(Generative Models)的推荐框架,探索从“判别式打分”到“生成式候选”的技术变革,重构推荐系统的召回与排序链路。 【可解释与对话式推荐系统】 利用大模型的自然语言交互与生成能力,构建支持多轮对话、主动询问和理由解释的推荐系统,提升用户信任度与交互体验。 【大模型推荐系统下的大模型优化】 专注于大模型在超大规模、高并发推荐场景下的挑战,驱动前沿算法的商业化落地。 【用户行为序列的模态融合与表征】 将海量、异构的用户行为序列(点击、浏览、转化)视为一种独特的“行为模态”,探索其与文本、图像等多模态信息的融合方法,为大模型注入更深层次的用户理解力。 课题项目背景: 当前,大模型已经在许多领域成功落地并产生了深远影响。对于推荐而言,我们认为大模型技术在深入了解用户意图乃至重塑推荐系统等诸多方面均潜藏巨大的价值。因此,我们希望能够充分利用大模型能力与知识,解决当前推荐系统的冷启动、缺乏解释性与泛化性等问题,打造下一代推荐系统,并将应用于以下方向: 1、利用大模型技术全面升级淘宝推荐的召排能力并在主场景落地取得收益; 2、结合大模型技术,探索全新的淘宝推荐交互方式,为推荐场景找到新的方向。 成长资源 1、实习同学将会与工业界经验丰富的师兄师姐合作,充分了解大规模推荐系统的运行方式,努力做出能够真实影响海量用户的工作; 2、鼓励发挥个人的知识与才能,在大模型与推荐系统相结合的蓝海领域大胆探索,提升团队与个人的影响力,做出引领业内方向的代表作; 3、充分保障探索所需的离在线资源,并给予充足的时间与空间。 岗位职责: 在这里,你将有机会接触海量用户行为数据,并通过前沿算法为淘宝用户提供个性化购物体验。同时,可以与有着丰富工业界经验的师兄师姐一起探索大模型技术在推荐系统中的应用。通过这段实习经验,你不仅能够深入了解国内top级应用的推荐场景,更能够有机会在大模型技术红利背景下,充分发挥自己的聪明才智重新定义与塑造下一代推荐系统,打造团队与个人的影响力。

更新于 2025-07-17北京|杭州
logo of bytedance
实习A135123A

团队介绍:Data-电商团队,负责电商创新项目的算法和大数据工作。依托于字节跳动产品,帮助用户发现并获得好物,享受美好生活。在这个团队,我们不仅要通过推荐和搜索算法帮助用户买到感兴趣的好东西,也要通过风控算法和智能平台治理算法去甄别违规行为,保护用户的购物体验;我们还要建设智能客服技术、大规模商品知识图谱来提升各个交易环节的效率;我们也要结合机器学习和运筹算法,来优化供应链和物流的效率和成本,并进一步提升用户体验;另外我们还会用人工智能来帮助商家提升经营能力。我们的使命:没有难卖的优价好物,让美好生活触手可得。 课题介绍: 背景:本项目旨在探索推荐领域下的大模型新范式,突破现在持续了较长时间的推荐模型结构和Infra的方案,且效果大幅好于现在的基线模型,在抖音短视频/直播/电商/头条/剪映等多个业务场景上得到应用。推荐领域的大模型是比较有挑战的事情,推荐对工程效率的要求更高,且用户的推荐体验上是个性化的,本课题会以下多个方向来做深入的研究,探索和建设推荐场景的大模型方案,大幅提升推荐模型的天花板。 1、在电商推荐海量用户与商品的数据下,探索大模型、大算力与推荐系统的结合; 2、探索多模态大模型等技术,提升相关类场景效果与用户体验; 3、探索LLM和推荐系统的结合、生成式推荐等方向,进一步提升信息匹配的效率。

更新于 2025-03-06北京