OPPO影像评测工程师
校招全职硬件类地点:深圳状态:招聘
任职要求
1.计算机视觉、数字图像处理、模式识别、图像深度学习、色彩科学等相关专业; 2.了解图像算法原理和图像处理基本算法,有图像类算法相关开发或运用图像处理检测项目经验者优先; 3.有计算机视觉或图像处理或智能评价等相关研究经历优先; 4.熟练应用Python/C++/C/Java等至少一门编程语言,有独立完成过项目软件开发经验; 5.具备良好的团队合作精神。 学历要求:本科及以上
工作职责
1.参与图像算法模型仿真或场景测试方案建设,建立图像标准仿真库,实现大规模图像质量分析与评价,落地产品上达成行业前列的影像效果; 2.参与分析行业图像处理算法相关进展,参与评估图像算法优劣势,并进行画质主客观量化及其标准制定,优化影像评测模型和标准; 3.参与构建基于AI的图像自动化评测技术,搭建智能自动化评测工具或平台,保证评测时效性及准确性,提高评测置信度; 4.基于测试原理和业务痛点,设计和实现自动化测试工具,参与建立流水线测试拦截模型,优化测试效率及缺陷质量。
包括英文材料
OpenCV+
https://learnopencv.com/getting-started-with-opencv/
At LearnOpenCV we are on a mission to educate the global workforce in computer vision and AI.
https://opencv.org/university/free-opencv-course/
This free OpenCV course will teach you how to manipulate images and videos, and detect objects and faces, among other exciting topics in just about 3 hours.
模式识别+
https://www.mathworks.com/discovery/pattern-recognition.html
Pattern recognition is the process of classifying input data into objects, classes, or categories using computer algorithms based on key features or regularities.
https://www.microsoft.com/en-us/research/wp-content/uploads/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
Pattern recognition has its origins in engineering, whereas machine learning grew out of computer science.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
图像处理+
https://opencv.org/blog/computer-vision-and-image-processing/
This fascinating journey involves two key fields: Computer Vision and Image Processing.
https://www.geeksforgeeks.org/python/image-processing-in-python/
Image processing involves analyzing and modifying digital images using computer algorithms.
https://www.youtube.com/watch?v=kSqxn6zGE0c
In this Introduction to Image Processing with Python, kaggle grandmaster Rob Mulla shows how to work with image data in python!
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
C+
https://www.freecodecamp.org/chinese/news/the-c-beginners-handbook/
本手册遵循二八定律。你将在 20% 的时间内学习 80% 的 C 编程语言。
https://www.youtube.com/watch?v=87SH2Cn0s9A
https://www.youtube.com/watch?v=KJgsSFOSQv0
This course will give you a full introduction into all of the core concepts in the C programming language.
https://www.youtube.com/watch?v=PaPN51Mm5qQ
In this complete C programming course, Dr. Charles Severance (aka Dr. Chuck) will help you understand computer architecture and low-level programming with the help of the classic C Programming language book written by Brian Kernighan and Dennis Ritchie.
Java+
https://www.youtube.com/watch?v=eIrMbAQSU34
Master Java – a must-have language for software development, Android apps, and more! ☕️ This beginner-friendly course takes you from basics to real coding skills.
学历+
相关职位
社招2年以上A199021
1、负责智能硬件设备影像主客观效果验收测试,组织跟进测试工具的开发和落地; 2、根据产品体验目标和feature定义,分析和设计测试场景,构建测试环境; 3、负责研发画调和算法迭代影像评测,输出测试报告和评价结果; 4、负责影像主客观数据采集和数据库建设,组织数据采集和评价的自动化、标准化建设。
更新于 2025-03-23
社招3年以上研发类
【】 1. 从画质专业维度和用户维度,搭建并完善图像画质评价体系,实现主客观量化及其标准制定,持续优化影像评测模型和标准,发布符合行业规范的内部评测标准白皮书; 2. 负责画质评测场景数据库的搭建,包括实验室和自然场景数据标准化采集,实现主观场景到客观场景的理论化映射; 3. 跟踪行业趋势,主导开发基于AI的画质自动化评测技术,搭建智能化评测平台,保证评测时效性及准确性,提高评测置信度; 4. 负责建立图像效果过程质量管控标准、流程、检查单、工具集,优化画质交付链路,提升交付效率。 【
社招3年以上TEST
1、主导旗舰级别项目影像效果评测工作,制定项目测试策略和风险管控策略,统筹产品交付全周期各模块测试活动,按期达成产品影像效果目标 2、影像效果模块领域的主观/客观/体验全链路的评测能力,提升测试技术覆盖率,做好能力规划,聚焦解决业务的短板痛点问题; 3、基于影像模块用户体验拆解端到端链路测试管控方案,从sensor、模组、算法、调试策略等模块实现精准测试; 4、主观评测客观量化模型构建,建立主观评测维度与客观量化算法模型的对应性,指导影像效果调试方向并落地项目。
更新于 2025-10-17