新浪微博热点推荐算法工程师
社招全职2年以上新浪&微博地点:北京状态:招聘
任职要求
1. 2年及以上相关经验,计算机.统计学.数学等相关专业本科及以上学历; 2. 熟悉Tensorflow/Pytorch等常用训练框架,负责过搜索/推荐系统相关的项目构建 3. 熟悉并行计算或者分布式计算,熟悉Spark,Flink,kafka等计算平台,有相关性能优化经验 4. 扎实的机器学习功底,熟悉常见推荐算法,如:LR、DSSM、DeepFM等,并有丰富实战经验 5. 对复杂问题, 有数据分析指导下的钻研耐心和分解解决能力 6. 具备高意愿的团队合作精神
工作职责
1. 设计与搭建个性化推荐系统,提升系统稳定性,提升用户点击转化率,优化用户体验 2. 负责推荐系统核心算法研发,对算法模型持续优化,提升推荐质量,包括但不限于排序模型、用户画像、用户实时意图建模等 3. 分析用户消费效率提升相关指标, 针对问题,提出解决方案和实施
包括英文材料
学历+
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
推荐系统+
[英文] Recommender Systems
https://www.d2l.ai/chapter_recommender-systems/index.html
Recommender systems are widely employed in industry and are ubiquitous in our daily lives.
Spark+
[英文] Learning Spark Book
https://pages.databricks.com/rs/094-YMS-629/images/LearningSpark2.0.pdf
This new edition has been updated to reflect Apache Spark’s evolution through Spark 2.x and Spark 3.0, including its expanded ecosystem of built-in and external data sources, machine learning, and streaming technologies with which Spark is tightly integrated.
Flink+
https://nightlies.apache.org/flink/flink-docs-release-2.0/docs/learn-flink/overview/
This training presents an introduction to Apache Flink that includes just enough to get you started writing scalable streaming ETL, analytics, and event-driven applications, while leaving out a lot of (ultimately important) details.
https://www.youtube.com/watch?v=WajYe9iA2Uk&list=PLa7VYi0yPIH2GTo3vRtX8w9tgNTTyYSux
Today’s businesses are increasingly software-defined, and their business processes are being automated. Whether it’s orders and shipments, or downloads and clicks, business events can always be streamed. Flink can be used to manipulate, process, and react to these streaming events as they occur.
Kafka+
https://developer.confluent.io/what-is-apache-kafka/
https://www.youtube.com/watch?v=CU44hKLMg7k
https://www.youtube.com/watch?v=j4bqyAMMb7o&list=PLa7VYi0yPIH0KbnJQcMv5N9iW8HkZHztH
In this Apache Kafka fundamentals course, we introduce you to the basic Apache Kafka elements and APIs, as well as the broader Kafka ecosystem.
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
DeepFM+
https://d2l.ai/chapter_recommender-systems/deepfm.html
DeepFM consists of an FM component and a deep component which are integrated in a parallel structure.
https://deeprs-tutorial.github.io/WWW_DNN.pdf
数据分析+
[英文] Data Analyst Roadmap
https://roadmap.sh/data-analyst
Step by step guide to becoming an Data Analyst in 2025
相关职位
社招MEG
-参与百度APP推荐系统核心策略的研发工作,为数亿用户提供卓越的新热推荐体验 -负责业界领先推荐算法的调研和评估,通过超大规模深度学习、进化学习等技术对产品目标建模,并通过特征、模型优化等持续优化模型效果 -通过对数据的敏锐洞察,深入挖掘产品潜在价值和需求,通过技术创新推动产品成长 -在个性化推荐的场景下,将人工智能前沿技术与业务相结合,使百度Feed流推荐成为更懂用户、更贴心的产品
更新于 2024-11-12
社招QQ音乐-技术类
1.负责腾讯音乐集团相关产品推荐算法的设计实现与优化; 2.负责完善现有推荐系统的基础算法及并行计算框架; 3.负责音乐平台业务的基于用户/音乐特性的数据挖掘及推荐策略设计实现; 4.负责能够根据业务数据变化不断设计并调整算法策略来提升算法质量,并最终提升用户体验。
更新于 2025-04-03