新浪微博深度学习研发工程师
社招全职新浪&微博地点:北京状态:招聘
任职要求
1. 计算机基础扎实,熟悉C/C++/Python,具备系统软件开发架构能力。熟悉计算机体系结构以及并行计算基本技术 2.有CUDA编程实践经验,熟悉相关编译调试、性能分析及优化 3.学习能力强,有求知欲与自我驱动能力,良好的沟通能力与团队协作能力 4.有以下经验者优先: 1)有高并发服务设计与实践经验,有分布式系统/K8S调度/RPC框架等实践者优先 2)熟悉GPU/cuDNN等,有GPU加速优化者经验者优先 3)熟悉TensorFlow/PyTorch/Padddle等深度学习框架,有框架二次开发经验者优先 4)有编译优化相关(XLA//TVM/triton等)相关实践者优先 5)了解TensorRT/Triton Server/TensorFlow serving/vLLM等推理引擎优先
工作职责
1.负责公司深度学习平台及引擎开发,为业务提供CPU/GPU高性能计算引擎 2.设计开发深度学习系统,协同算法团队优化模型效果与训练推理性能
包括英文材料
C+
https://www.freecodecamp.org/chinese/news/the-c-beginners-handbook/
本手册遵循二八定律。你将在 20% 的时间内学习 80% 的 C 编程语言。
https://www.youtube.com/watch?v=87SH2Cn0s9A
https://www.youtube.com/watch?v=KJgsSFOSQv0
This course will give you a full introduction into all of the core concepts in the C programming language.
https://www.youtube.com/watch?v=PaPN51Mm5qQ
In this complete C programming course, Dr. Charles Severance (aka Dr. Chuck) will help you understand computer architecture and low-level programming with the help of the classic C Programming language book written by Brian Kernighan and Dennis Ritchie.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
CUDA+
https://developer.nvidia.com/blog/even-easier-introduction-cuda/
This post is a super simple introduction to CUDA, the popular parallel computing platform and programming model from NVIDIA.
https://www.youtube.com/watch?v=86FAWCzIe_4
Lean how to program with Nvidia CUDA and leverage GPUs for high-performance computing and deep learning.
高并发+
https://www.baeldung.com/concurrency-principles-patterns
In this tutorial, we’ll discuss some of the design principles and patterns that have been established over time to build highly concurrent applications.
https://www.baeldung.com/java-concurrency
Handling concurrency in an application can be a tricky process with many potential pitfalls. A solid grasp of the fundamentals will go a long way to help minimize these issues.
https://www.oreilly.com/library/view/concurrency-in-go/9781491941294/
You’ll understand how Go chooses to model concurrency, what issues arise from this model, and how you can compose primitives within this model to solve problems.
https://www.oreilly.com/library/view/modern-concurrency-in/9781098165406/
With this book, you'll explore the transformative world of Java 21's key feature: virtual threads.
https://www.youtube.com/watch?v=qyM8Pi1KiiM
https://www.youtube.com/watch?v=wEsPL50Uiyo
分布式系统+
https://www.distributedsystemscourse.com/
The home page of a free online class in distributed systems.
https://www.youtube.com/watch?v=7VbL89mKK3M&list=PLOE1GTZ5ouRPbpTnrZ3Wqjamfwn_Q5Y9A
Kubernetes+
https://kubernetes.io/docs/tutorials/kubernetes-basics/
This tutorial provides a walkthrough of the basics of the Kubernetes cluster orchestration system.
https://kubernetes.io/zh-cn/docs/tutorials/kubernetes-basics/
本教程介绍 Kubernetes 集群编排系统的基础知识。每个模块包含关于 Kubernetes 主要特性和概念的一些背景信息,还包括一个在线教程供你学习。
https://www.youtube.com/watch?v=s_o8dwzRlu4
Hands-On Kubernetes Tutorial | Learn Kubernetes in 1 Hour - Kubernetes Course for Beginners
https://www.youtube.com/watch?v=X48VuDVv0do
Full Kubernetes Tutorial | Kubernetes Course | Hands-on course with a lot of demos
RPC+
https://javaguide.cn/distributed-system/rpc/rpc-intro.html
为什么要 RPC ? 因为,两个不同的服务器上的服务提供的方法不在一个内存空间,所以,需要通过网络编程才能传递方法调用所需要的参数。并且,方法调用的结果也需要通过网络编程来接收。
https://www.youtube.com/watch?v=S2osKiqQG9s
This video is part of an 8-lecture series on distributed systems, given as part of the undergraduate computer science course at the University of Cambridge.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
TensorRT+
https://docs.nvidia.com/deeplearning/tensorrt/latest/getting-started/quick-start-guide.html
This TensorRT Quick Start Guide is a starting point for developers who want to try out the TensorRT SDK; specifically, it demonstrates how to quickly construct an application to run inference on a TensorRT engine.
vLLM+
https://www.newline.co/@zaoyang/ultimate-guide-to-vllm--aad8b65d
vLLM is a framework designed to make large language models faster, more efficient, and better suited for production environments.
https://www.youtube.com/watch?v=Ju2FrqIrdx0
vLLM is a cutting-edge serving engine designed for large language models (LLMs), offering unparalleled performance and efficiency for AI-driven applications.
推理引擎+
https://www.youtube.com/watch?v=_dvk75LEJ34
https://www.youtube.com/watch?v=XtT5i0ZeHHE
相关职位
社招网易伏羲
1、算法研究: 围绕大规模/AIGC场景研究业界算法动态,实践相关算法,对基础的算法效果和能力进行改进。 2、模型优化:结合量化剪枝等相关算法优化技术,降低推理延时及成本,突破新技术在新场景的应用边界。 3、工程优化: 拥抱开源生态,保持洞察。充分挖掘系统和数据的优势,结合操作系统、分布式、芯片特性探索的工程落地可能。 4、成果交付: 从业务出发,重点面向文本、语音、图像等多种模态、构建高效的SDK或智能体方案,为业务提供出色、稳定的技术支持。
更新于 2025-06-17
社招3-5年网易伏羲
1、算法研究: 围绕大规模/AIGC场景研究业界算法动态,实践相关算法,对基础的算法效果和能力进行改进。 2、模型优化:结合量化剪枝等相关算法优化技术,降低推理延时及成本,突破新技术在新场景的应用边界。 3、工程优化: 拥抱开源生态,保持洞察。充分挖掘系统和数据的优势,结合操作系统、分布式、芯片特性探索的工程落地可能。 4、成果交付: 从业务出发,重点面向文本、语音、图像等多种模态、构建高效的SDK或智能体方案,为业务提供出色、稳定的技术支持。
更新于 2025-09-25
社招技术
深入理解自动驾驶系统从感知预测到决策规划的模块化构建,以海量数据为基石、机器学习算法为工具,设计开发自动驾驶前沿算法,推动解决自动驾驶规模化部署的痛难点。研究方向为智能预测与决策规划(research相关),包括但不限于轨迹预测、基于学习的决策规划、端到端自动驾驶、模仿学习、强化学习、离线强化学习、基于大模型的决策分析等。
更新于 2025-09-26