顺丰机器学习工程师
社招全职5-10年地点:上海状态:招聘
任职要求
1. 学历与专业 * 硕士及以上学历,计算机科学、统计学、运筹学、应用数学及相关专业背景优先。 2. 经验与领域知识 * 3年以上AI算法/机器学习相关工作经验。 * 拥有供应链领域(如需求预测、库存优化、智能补货)实战项目经验者优先。 * 深入理解深度学习原理,对时序预测领域前沿模型和技术(如Transformer, TimesNet, LSTM, GRU等)有深刻理解和实践经验,具备模型结构创新或改进能力。 3. 技术能力 * 深度学习框架:精通 PyTorch 或 TensorFlow 中至少一种主…
登录查看完整任职要求
微信扫码,1秒登录
工作职责
1. 核心算法研发与创新 * 基于公司内外部海量的供应链数据(仓储、物流、销售等),进行深度机器学习与深度学习建模。 * 核心聚焦时序预测领域的创新与研究,涵盖商品需求预测、库存水位预测、运输时效预估等关键场景。 * 探索AI智能体在自动化补货决策等领域的应用。 2. 全链路模型交付 * 独立负责从数据到业务价值的模型全链路工作,包括:业务问题定义、数据清洗、特征工程、模型训练与调优、在线/离线部署、A/B测试、效果监控与评估,确保模型稳定产生业务价值。 3. 业务赋能与洞察 * 深入理解供应链业务逻辑,与采购、计划、仓储等团队紧密协作,将复杂业务问题转化为可量化的算法问题。 * 通过数据分析和模型可解释性工具,为业务决策提供深度洞察与建议。 4. 技术前瞻与沉淀 * 跟踪时序预测、深度学习、多智能体系统等前沿技术,推动其在业务中的可行性验证与落地。 * 沉淀可复用的算法组件、工具与方法论,提升团队整体效率。
包括英文材料
学历+
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
Transformer+
https://huggingface.co/learn/llm-course/en/chapter1/4
Breaking down how Large Language Models work, visualizing how data flows through.
https://poloclub.github.io/transformer-explainer/
An interactive visualization tool showing you how transformer models work in large language models (LLM) like GPT.
https://www.youtube.com/watch?v=wjZofJX0v4M
Breaking down how Large Language Models work, visualizing how data flows through.
LSTM+
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
Humans don’t start their thinking from scratch every second.
https://d2l.ai/chapter_recurrent-modern/lstm.html
The term “long short-term memory” comes from the following intuition.
https://developer.nvidia.com/discover/lstm
A Long short-term memory (LSTM) is a type of Recurrent Neural Network specially designed to prevent the neural network output for a given input from either decaying or exploding as it cycles through the feedback loops.
https://www.youtube.com/watch?v=YCzL96nL7j0
Basic recurrent neural networks are great, because they can handle different amounts of sequential data, but even relatively small sequences of data can make them difficult to train.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
还有更多 •••
相关职位
社招3-5年
主要职责: 1、负责大数据特征挖掘、数据建模,挖掘大数据价值并应用到物流供应链相关的业务场景中; 2、利用数据挖掘和机器学习建模技术,进行模型开发与部署应用; 3、负责海量数据分析、特征挖掘、算法选型迭代,就业务指标评估、解决方案和效果进行持续的分析和改进; 4、基于业务对接产品、研发团队,参与方案评估、策略分析和数学建模,开拓前沿建模技术并结合业务场景解决实际痛点 5、负责物流行业前沿的需求预测技术升级的工作,与团队一起攻坚克难,建设行业的预测大模型,引领行业变革
更新于 2025-07-24深圳
社招5-10年
1、负责大数据特征挖掘、数据建模,挖掘大数据价值并应用到物流供应链相关的预测业务场景中; 2、利用数据挖掘和机器学习建模技术,进行模型开发与部署应用; 3、负责海量数据分析、特征挖掘、算法选型迭代,就业务指标评估、解决方案和预测效果进行持续的分析和改进; 4、基于业务对接产品、研发团队,参与方案评估、策略分析和数学建模,开拓前沿建模技术并结合业务场景解决实际痛点。
更新于 2024-11-05深圳