logo of alibaba

阿里巴巴大语言模型对齐能力研究

实习兼职淘天集团研究型实习生地点:北京 | 杭州状态:招聘

任职要求


1.自然语言处理机器学习数据挖掘、人工智能等相关专业的硕士生/博士生;
2.熟练掌握TensorflowPytorch深度学习框架,扎实的编程基础,具备独立的算法实现能力;
3.有LLM实操经验,参与过大模型训练,SFT,RLHF等项目者优先; 
4.良好的逻辑分析能力和数理基础,对算法原理及应用有较深入的理解,在人工智能相关的各类国际顶级会议/期刊中发表过论文者优先。

工作职责


1. 跟进和研发大规模语言模型(LLM)的SFT、RLHF等技术;
2. 跟进和研发大规模语言模型的数据治理与筛选、指令合成与指令跟随等技术;
3. 研发基于大模型的淘宝问问助手、ChatBot、检索增强、Code、Longchain等下游应用;
4. 结合以上方向的探索和研究,撰写发表论文,和业界、学术界保持良好的交流。
包括英文材料
NLP+
机器学习+
数据挖掘+
TensorFlow+
PyTorch+
深度学习+
算法+
大模型+
SFT+
相关职位

logo of bytedance
实习A29489

团队介绍:风控研发团队致力于解决各个产品(包括抖音、头条等)面临的各种黑灰产对抗问题,涵盖内容、交易、流量、账号等多个方面的风险治理领域。利用机器学习、多模态、大模型等技术对用户行为、内容进行理解从而识别潜在的风险和问题。不断深入理解业务和用户行为,进行模型和算法创新,打造业界领先的风控算法体系。 课题介绍: 1、课题目标:以风控数据为基础,优化提高大模型对于结构化数据(序列数据、图数据)的理解推理能力。 2、课题背景:风控场景下的数据主要为结构化数据,而目前大模型对于文本和图像的理解能力有了很大的提升,如何跟风控场景的非文本、图像数据(结构化数据)结合起来,让大模型能够更好的理解结构化的数据,是一个业界难题。面临着三大挑战 :(1)如何有效地将结构化的信息与nlp语义空间进行对齐,使得模型能够同时理解数据结构和语义信息;(2)如何用适当的指令使得大模型理解结构化数据中的结构信息;(3)如何赋予大语言模型图学习下游任务的逐步推理能力,从而逐步推断出更复杂的关系和属性。 3、课题内容:目前业界对结构化数据探索有:1、图数据理解相关GraphGPT:让大模型读懂图数据(SIGIR'2024) ;2、图数据RAG相关GraphRAG:Unlocking LLM discovery on narrative private data;3、序列数据理解相关StructGPT:面向结构化数据的大模型推理框架(EMNLP-2023)。目前的主要工作都是单一结构数据的理解,在风控场景下还面临几个问题:(1)对各种不同种类的的结构化数据融合理解怎么做,特别是融合图和序列数据的数据理解;(2)针对课题必要性中的问题;(3)对于下游任务的推理能力,目前的研究比较少,针对序列数据的推理能力研究非常少。 4、研究方向:大模型结构化数据理解、大模型结构化数据RAG、大模型思维链。

更新于 2025-03-04
logo of bytedance
实习A199333A

团队介绍:风控研发团队致力于解决各个产品(包括抖音、头条等)面临的各种黑灰产对抗问题,涵盖内容、交易、流量、账号等多个方面的风险治理领域。利用机器学习、多模态、大模型等技术对用户行为、内容进行理解从而识别潜在的风险和问题。不断深入理解业务和用户行为,进行模型和算法创新,打造业界领先的风控算法体系。 课题介绍: 1、课题目标:以风控数据为基础,优化提高大模型对于结构化数据(序列数据、图数据)的理解推理能力。 2、课题背景:风控场景下的数据主要为结构化数据,而目前大模型对于文本和图像的理解能力有了很大的提升,如何跟风控场景的非文本、图像数据(结构化数据)结合起来,让大模型能够更好的理解结构化的数据,是一个业界难题。面临着三大挑战 :(1)如何有效地将结构化的信息与nlp语义空间进行对齐,使得模型能够同时理解数据结构和语义信息;(2)如何用适当的指令使得大模型理解结构化数据中的结构信息;(3)如何赋予大语言模型图学习下游任务的逐步推理能力,从而逐步推断出更复杂的关系和属性。 3、课题内容:目前业界对结构化数据探索有:(1)图数据理解相关GraphGPT:让大模型读懂图数据(SIGIR'2024) ;(2)图数据RAG相关GraphRAG:Unlocking LLM discovery on narrative private data;(3)序列数据理解相关StructGPT:面向结构化数据的大模型推理框架(EMNLP-2023)。目前的主要工作都是单一结构数据的理解,在风控场景下还面临几个问题:(1)对各种不同种类的的结构化数据融合理解怎么做,特别是融合图和序列数据的数据理解;(2)针对课题必要性中的问题;(3)对于下游任务的推理能力,目前的研究比较少,针对序列数据的推理能力研究非常少。 4、研究方向:大模型结构化数据理解、大模型结构化数据RAG、大模型思维链。

更新于 2025-03-04
logo of bytedance
实习A192561

团队介绍:风控研发团队致力于解决各个产品(包括抖音、头条等)面临的各种黑灰产对抗问题,涵盖内容、交易、流量、账号等多个方面的风险治理领域。利用机器学习、多模态、大模型等技术对用户行为、内容进行理解从而识别潜在的风险和问题。不断深入理解业务和用户行为,进行模型和算法创新,打造业界领先的风控算法体系。 课题介绍: 1、课题目标:以风控数据为基础,优化提高大模型对于结构化数据(序列数据、图数据)的理解推理能力。 2、课题背景:风控场景下的数据主要为结构化数据,而目前大模型对于文本和图像的理解能力有了很大的提升,如何跟风控场景的非文本、图像数据(结构化数据)结合起来,让大模型能够更好的理解结构化的数据,是一个业界难题。面临着三大挑战 :(1)如何有效地将结构化的信息与nlp语义空间进行对齐,使得模型能够同时理解数据结构和语义信息;(2)如何用适当的指令使得大模型理解结构化数据中的结构信息;(3)如何赋予大语言模型图学习下游任务的逐步推理能力,从而逐步推断出更复杂的关系和属性。 3、课题内容:目前业界对结构化数据探索有:(1)图数据理解相关GraphGPT:让大模型读懂图数据(SIGIR'2024) ;(2)图数据RAG相关GraphRAG:Unlocking LLM discovery on narrative private data;(3)序列数据理解相关StructGPT:面向结构化数据的大模型推理框架(EMNLP-2023)。目前的主要工作都是单一结构数据的理解,在风控场景下还面临几个问题:(1)对各种不同种类的的结构化数据融合理解怎么做,特别是融合图和序列数据的数据理解。(2)针对课题必要性中的问题;(3)对于下游任务的推理能力,目前的研究比较少,针对序列数据的推理能力研究非常少。 4、研究方向:大模型结构化数据理解、大模型结构化数据RAG、大模型思维链。

更新于 2025-03-04
logo of bytedance
实习A192811A

团队介绍:风控研发团队致力于解决各个产品(包括抖音、头条等)面临的各种黑灰产对抗问题,涵盖内容、交易、流量、账号等多个方面的风险治理领域。利用机器学习、多模态、大模型等技术对用户行为、内容进行理解从而识别潜在的风险和问题。不断深入理解业务和用户行为,进行模型和算法创新,打造业界领先的风控算法体系。 课题介绍: 1、课题目标:以风控数据为基础,优化提高大模型对于结构化数据(序列数据、图数据)的理解推理能力。 2、课题背景:风控场景下的数据主要为结构化数据,而目前大模型对于文本和图像的理解能力有了很大的提升,如何跟风控场景的非文本、图像数据(结构化数据)结合起来,让大模型能够更好的理解结构化的数据,是一个业界难题。面临着三大挑战 :(1)如何有效地将结构化的信息与nlp语义空间进行对齐,使得模型能够同时理解数据结构和语义信息;(2)如何用适当的指令使得大模型理解结构化数据中的结构信息;(3)如何赋予大语言模型图学习下游任务的逐步推理能力,从而逐步推断出更复杂的关系和属性。 3、课题内容:目前业界对结构化数据探索有:(1)图数据理解相关GraphGPT:让大模型读懂图数据(SIGIR'2024) ;(2)图数据RAG相关GraphRAG:Unlocking LLM discovery on narrative private data;(3)序列数据理解相关StructGPT:面向结构化数据的大模型推理框架(EMNLP-2023)。目前的主要工作都是单一结构数据的理解,在风控场景下还面临几个问题:(1)对各种不同种类的的结构化数据融合理解怎么做,特别是融合图和序列数据的数据理解。(2)针对课题必要性中的问题。(3)对于下游任务的推理能力,目前的研究比较少,针对序列数据的推理能力研究非常少。 4、研究方向:大模型结构化数据理解、大模型结构化数据RAG、大模型思维链。

更新于 2025-03-04