阿里巴巴阿里妈妈-视频生成大模型研究型实习生
任职要求
1. 掌握C/C++, Python 等至少一门编程语言,有深度学习开发经验,具备独立实现算法的能力; 2. 在计算机视觉、自然语言处理、多模态等方向有研发经验; 3. 良好的逻辑分析能力和数理基础,在复杂业务场景下能够分解和抽象问题,提供优秀、完整、可行的解决方案; 4. 对算法原理及应用有较深入的理解,有实际成果并发表在国际重要会议、期刊者优先; 5. 对文案生成视频、大语言模型、多模态大模型等AIGC前沿领域有研发经验或充分理解者优先。
工作职责
1. 跟进和研发扩散模型、视频生成基座模型等先进生成算法和模型; 2. 跟进和研发视频生成应用大模型、多条件可控生成等先进的生成算法、模型和策略; 3. 研发基于视频生成大模型的视频AIGC工具应用; 4. 结合以上方向的探索和研究,撰写发表论文,和业界、学术界保持良好的交流。
随着数字化和信息技术的迅猛发展,音视频内容的生成和理解成为了研究的热点。传统的音视频处理方法往往依赖于特定领域的知识,难以实现跨领域的统一理解。近年来,深度学习和大模型技术的崛起为解决这一问题提供了新的思路。 尤其是如GPT-4o这样的先进语言模型,展现了在文本理解和生成上的强大能力。通过构建音视频数据的多模态大模型,可以实现对音视频内容的深入理解与高效生成。这样的模型不仅能够提升音视频内容的质量,还能增强用户体验,应用于娱乐、教育、医疗等多个领域。 此外,提升模型在音视频场景中的推理能力和交互性,能够实现更为智能的内容推荐与创作辅助。综上所述,围绕音视频统一理解生成大模型的研究,具有重要的理论意义和广泛的应用前景,为未来的数字内容创作奠定了坚实基础。 为实现音视频数据的多模态大模型,存在的挑战包括但不限于: 1、生成模型的可扩展性: 如何构建可扩展的生成模型,能够处理不同类型的音频和视频数据?例如,如何让模型适应不同的编码格式、采样率和分辨率? 2、噪声鲁棒性: 如何提升模型对音频和视频噪声的鲁棒性?特别是在实际应用环境中,常常会遇到不同类型的噪声干扰。 3、跨模态的语义理解: 如何提高模型对跨模态内容的语义理解能力?包括如何在生成过程中保持音频与视频内容的一致性,以及如何避免模态间的误解。 4、实时处理能力: 如何优化模型以达到实时处理的能力,尤其是在需同时处理音频和视频流的应用场景中,如视频会议、直播等?
1. 负责大模型(MLLMs/LLMs)核心技术研发,包括预训练、垂域SFT、RLHF等,持续追踪和应用领域最新技术进展; 2. 负责大模型性能优化:研发模型加速技术,如量化、剪枝与知识蒸馏;优化数据特征与调度策略;构建高效推理链路、提升运行速度及降低成本; 3. 负责多模态AIGC的创意玩法探索,以及细粒度可控的多模态内容生成和编辑、不同输入条件下的高质量视频生成技术研究等; 4. 基于研究成果撰写高质量学术论文,积极参与业界交流活动,建立和维护学术界与产业界的合作关系。
1、理解-生成融合范式: 研究理解模型和生成模型的有效融合范式,例如探索Diffusion-Transformer (DiT) 和 Auto-Regressive (AR) 模型的融合与交互方式。 2、融合音频数据的统一模型: 将音频数据融入现有的多模态理解和生成框架,构建更全面的多模态统一模型。 3、统一Tokenizer研究: 探索适用于图像、视频、音频等多种模态生成和理解的统一Tokenizer,提高模型的泛化能力和效率。