阿里巴巴多模态实时交互电商数字人
任职要求
1、计算机视觉、自然语言处理、多模态理解等相关专业背景的在读硕士或博士; 2、扎实的算法和编程能力,熟悉主流的深度学习框架(Pytorch/TensorFlow),熟练掌握Python/C++中至少一门语言; 3、有图文MLLM/音视频MLLM/Omni Model等一项或多项相关经验,对相关算法模型和优化有深刻理解; 4、有10B以上多模态大模型训练者优先,有优化DeepSpeed/Megatron框架者优先; 5、有CCF-A类顶会顶刊论文发表者优先,有高影响力开源项目者优先。
工作职责
欢迎加入阿里巴巴数字人团队! 如果你对以下领域感兴趣,并希望在实际项目中积累经验,欢迎加入我们! 你将参与的工作: 个性化数字人形象生成系统 在海量用户数据和先进技术支持下,协助开发能够生成千人千面个性化虚拟形象的系统。 学习并应用基础的图像处理和生成模型,帮助提升系统的定制化能力。 高表现力肢体表情驱动技术研发 参与研发基于动作捕捉、表情合成和实时渲染技术的数字人表情和肢体动作驱动系统。 协助优化现有技术,使数字人的表情和动作更加自然流畅,增强情感表达能力。 核心技术难题攻克 在导师指导下,学习和探索基于扩散模型的高质量数字人生成技术。 多模态统一大模型的应用 了解并参与多模态信息融合的研究,结合图像、文本、音频等多种信息,构建具备理解能力和生成能力的数字人系统。 协助解决业界尚未突破的技术瓶颈,推动技术创新。 相关研究课题细分方向: 数字人形象定制与风格化迁移 协助开发和优化数字人形象定制生成能力,适配不同的实时互动场景。 学习并应用基本的图像处理和生成算法,提升系统的灵活性和适应性。 数字人表情与肢体动作驱动 在导师指导下,参与数字人表情和肢体动作驱动技术的研发。 协助测试和优化现有系统,使其表现力更接近真人水平。 数字人多模态理解感知能力 参与构建数字人与用户的实时交互系统,提升其理解和响应能力。 协助进行多模态信息融合实验,增强数字人的个性化服务能力。 我们期待你是: 计算机科学、软件工程、人工智能等相关专业的在校学生(本科或研究生)。 对数字人技术有浓厚兴趣,愿意在实践中学习和成长。 具备一定的编程基础(如Python、C++),熟悉常用的数据处理和机器学习框架(如PyTorch、TensorFlow)者优先。 良好的团队合作精神和沟通能力。 加入我们,你将获得: 丰富的实战经验和前沿技术的学习机会。 导师一对一指导,助力你的职业发展。 参与影响亿级用户的大规模项目,感受技术带来的巨大价值。 开放包容的工作环境和充满活力的团队氛围。 让我们一起定义未来数字人的无限可能,期待你的加入!
T-Star计划是阿里巴巴淘天集团顶尖人才招聘和培养项目,继承“阿里星〞的使命与愿景,面向全球招募顶尖技术人才。首次开设实习生专项招聘,面向2025年10月后毕业的校优秀技术同学。期待你们在淘天,通过极具挑战的前沿课题与亿级规模的海量数据、应用场景,探索和实践最前沿的Al技术,在有价值的业务场景落地技术成果。 如果你,期望在阿里巴巴生态的广阔场景中,借助海量用户数据和先进的技术能力,打造千人千面的个性化数字人形象生产系统,为亿级用户提供高度定制化的虚拟形象服务; 如果你,期望参与最前沿的高表现力肢体表情驱动技术研发,通过先进的动作捕捉、表情合成和实时渲染技术,实现数字人自然流畅的表情和肢体动作,赋予数字人更真实的情感表达能力; 如果你,期望攻克数字人生成中的核心技术难题,例如基于扩散模型的高质量数字人生成、材质与纹理的高度还原、服饰动态效果的真实模拟,以及在复杂交互场景中保持人物和环境的一致性和自然度; 如果你,期望深入探索多模态统一大模型的应用,将图像、文本、音频等多模态信息融合,构建具备精细理解能力和强大生成能力的数字人系统,解决业界尚未突破的技术瓶颈; 加入我们,你的成果将直用于电商领域的核心场景,直播,客服,导购,影响数以亿计的用户,推动电商领域的数字化创新,并带来巨大的商业和社会价值。让我们一起定义未来数字人的无限可能! T-Star实习可以带给你什么? ꔷ ①加入前沿技术探索队伍,参与顶级课题研究,有机会实现工业界项目落地。②跟企业大牛导师/学术界名导一起做有价值的课题。③丰富的技术资源、海量的数据与优秀的团队助力发paper ꔷ 投递T-Star实习生,提前解锁淘天顶级技术岗位,实习与T-Star正式批/应届秋招投递不冲突。拿到T-Star意向书的同时,将获得直通正式批次终面的机会;参与T-Star实习且表现优秀的同学,提供T-Star转正Offer。
T-Star计划是阿里巴巴淘天集团顶尖人才招聘和培养项目,继承“阿里星〞的使命与愿景,面向全球招募顶尖技术人才。首次开设实习生专项招聘,面向2025年10月后毕业的校优秀技术同学。期待你们在淘天,通过极具挑战的前沿课题与亿级规模的海量数据、应用场景,探索和实践最前沿的Al技术,在有价值的业务场景落地技术成果。 如果你,期望在阿里巴巴生态的广阔场景中,借助海量用户数据和先进的技术能力,打造千人千面的个性化数字人形象生产系统,为亿级用户提供高度定制化的虚拟形象服务; 如果你,期望参与最前沿的高表现力肢体表情驱动技术研发,通过先进的动作捕捉、表情合成和实时渲染技术,实现数字人自然流畅的表情和肢体动作,赋予数字人更真实的情感表达能力; 如果你,期望攻克数字人生成中的核心技术难题,例如基于扩散模型的高质量数字人生成、材质与纹理的高度还原、服饰动态效果的真实模拟,以及在复杂交互场景中保持人物和环境的一致性和自然度; 如果你,期望深入探索多模态统一大模型的应用,将图像、文本、音频等多模态信息融合,构建具备精细理解能力和强大生成能力的数字人系统,解决业界尚未突破的技术瓶颈; 加入我们,你的成果将直用于电商领域的核心场景,直播,客服,导购,影响数以亿计的用户,推动电商领域的数字化创新,并带来巨大的商业和社会价值。让我们一起定义未来数字人的无限可能! T-Star实习可以带给你什么? ꔷ ①加入前沿技术探索队伍,参与顶级课题研究,有机会实现工业界项目落地。②跟企业大牛导师/学术界名导一起做有价值的课题。③丰富的技术资源、海量的数据与优秀的团队助力发paper
T-Star计划是阿里巴巴淘天集团顶尖人才招聘和培养项目,继承“阿里星〞的使命与愿景,面向全球招募顶尖技术人才。首次开设实习生专项招聘,面向2025年10月后毕业的校优秀技术同学。期待你们在淘天,通过极具挑战的前沿课题与亿级规模的海量数据、应用场景,探索和实践最前沿的Al技术,在有价值的业务场景落地技术成果。 如果你,期望在阿里巴巴生态的广阔场景中,借助海量用户数据和先进的技术能力,打造千人千面的个性化数字人形象生产系统,为亿级用户提供高度定制化的虚拟形象服务; 如果你,期望参与最前沿的高表现力肢体表情驱动技术研发,通过先进的动作捕捉、表情合成和实时渲染技术,实现数字人自然流畅的表情和肢体动作,赋予数字人更真实的情感表达能力; 如果你,期望攻克数字人生成中的核心技术难题,例如基于扩散模型的高质量数字人生成、材质与纹理的高度还原、服饰动态效果的真实模拟,以及在复杂交互场景中保持人物和环境的一致性和自然度; 如果你,期望深入探索多模态统一大模型的应用,将图像、文本、音频等多模态信息融合,构建具备精细理解能力和强大生成能力的数字人系统,解决业界尚未突破的技术瓶颈; 加入我们,你的成果将直用于电商领域的核心场景,直播,客服,导购,影响数以亿计的用户,推动电商领域的数字化创新,并带来巨大的商业和社会价值。让我们一起定义未来数字人的无限可能! T-Star实习可以带给你什么? ꔷ ①加入前沿技术探索队伍,参与顶级课题研究,有机会实现工业界项目落地。②跟企业大牛导师/学术界名导一起做有价值的课题。③丰富的技术资源、海量的数据与优秀的团队助力发paper
团队介绍:广告业务原为商业产品与技术部门,为抖音集团的商业变现提供广告产品与技术,负责端到端大型广告系统建设,覆盖抖音、今日头条、西瓜视频、番茄小说、穿山甲等产品矩阵,践行"激发生意新可能"理念,致力于让营销更省心、更高效、更美好,推动商业的可持续增长,让不分体量、地域的企业及个体,都能通过数字化技术激发创造、驱动生意。连接广告主、用户及生态伙伴、成为开放共赢的全球最佳智能营销平台之一。在这里,你将投身建设面向未来的数字营销能力,接触到全球先进的商业产品架构、模型和算法,在互联网广告行业始终创新。 课题背景: 随着人工智能技术的快速发展,大模型技术在交易与广告场景中的应用日益广泛,已成为推动行业创新和效率提升的重要驱动力。大模型凭借其强大的学习能力和泛化性能,在多个领域展现出显著优势。例如,推荐大模型能够精准捕捉用户偏好,提升个性化推荐效果;AIGC(AI-Generated Content)技术可用于广告创意、商品图片和视频生成,大幅降低创作成本并提升内容质量;广告投放诊断系统和诊断助手帮助优化投放策略;智能客服、影片智能剪辑、智能导购、大模型审核、用户序列建模以及多模态广告和用户理解等应用,则通过自然语言处理、多模态数据融合等技术,提升用户体验和业务效率。 然而,交易与广告场景对大模型系统的要求极高,不仅需要模型具备出色的精度和泛化能力,还需在实时性、稳定性、可扩展性等方面满足严苛标准。特别是在大规模分布式训练、推理加速、异构硬件支持、多模态数据处理以及系统集成等方面,存在诸多技术难点。因此,针对交易与广告场景研发和优化大模型系统,不仅是人工智能技术发展的前沿方向,也是行业应用的迫切需求。本课题旨在通过系统和工程领域的深入研究,突破关键技术瓶颈,构建高效、稳定、可扩展的大模型解决方案,为交易与广告场景提供强有力的技术支撑。 课题挑战: 1、大规模分布式训练加速:大模型训练需处理海量数据和高复杂度计算,导致训练耗时长、资源需求大。如何优化分布式训练架构,提升数据并行、模型并行和流水线并行的效率,是首要技术难题。 2、推理加速和性能优化:交易与广告场景对实时性要求极高,如广告投放需毫秒级决策。如何在资源受限环境下通过模型压缩和推理引擎优化实现快速推理,是关键挑战。 3、异构硬件支持:大模型需适配多种硬件平台。如何实现高效部署和负载均衡,确保跨硬件精度一致性和高性能,是技术难点。 4、编译优化:编译优化是过程复杂,如何开发高效编译器,优化长尾/灵活模型或结构在不同Accelerator执行效率并减少延迟,是亟待解决的问题。 5、Agent工程:智能客服和导购等应用需构建自主决策的AI Agent。如何设计高效的Agent系统,支持复杂任务执行,是前沿挑战。 6、强化学习框架:强化学习在广告投放优化等场景中潜力巨大。如何构建高效框架,支持大规模环境训练和推理,是研究难点。 课题内容: 1、大规模分布式训练加速技术 1)研究数据并行、模型并行和混合并行算法,优化训练效率; 2)开发自适应负载均衡机制,减少资源浪费; 3)探索梯度压缩和通信优化技术,降低网络开销; 2、推理加速与性能优化方法 1)研究模型压缩技术(如量化、剪枝),减小模型体积; 2)开发高效推理引擎,支持批量推理和异步处理; 3)针对不同Accelerator的架构加速推理过程; 3、异构硬件支持与优化 1)设计通用部署框架,支持多硬件无缝集成; 2)开发硬件感知调度算法,优化任务分配; 3)研究跨硬件模型迁移技术,确保精度一致; 4、编译优化技术 1)深入优化模型编译器,优化长尾场景的计算开销; 2)研究图优化和算子融合技术,减少计算开销; 3)探索动态优化方法,提升运行时效率; 5、Agent工程与实现 1)设计模块化Agent架构,支持任务分解和决策; 2)开发多模态交互技术,提升用户体验; 3)研究Agent训练与评估方法,优化复杂场景性能; 6、强化学习框架构建 1)开发高效强化学习算法,支持多智能体协作; 2)针对交易与广告场景的训练场景优化训练速度,提升迭代效率; 3)探索强化学习在广告投放中的应用,提升决策效果。