阿里巴巴淘宝平台事业部-大模型应用算法工程师-商家智能服务(售前方向)
任职要求
1. 计算机科学相关专业(人工智能、计算机科学、电子信息工程、数学等)硕士及以上学历; 2. 有智能客服、多模态大模型、NLP等背景和工作经验的,或在相关领域国际顶会发表过论文者优先; 3. 扎实的技术背景:对基于NLP、LLM、召回排序的各类算法有一定的理解;有相关的实践或研究经验,较强的论文阅读和复现的能力,独立问题分析和解决能力; 4. 熟练掌握机器学习/深度学习的基本方法,具有一定的独立问题分析和解决能力,对解决具有挑战性问题能够充满热情; 5. 熟练掌握Java/C++/python 中至少一门语言,具有扎实的数据结构功底,能够独立完成算法模块设计开发和测试。
工作职责
1. 负责智能对话大模型相关的知识体系构建,包括知识挖掘、商家后台知识体系、在线链路的召回排序等; 2. 研究并应用最新的NLP、大模型、多模态技术,提高在线链路的业务效果; 3. 深入挖掘商品的图片、视频、文本介绍等各个模态中包含的有价值信息,理解并提炼商品问答知识; 4. 与数据科学团队合作,设计和实施模型训练策略,针对特定领域,进行模型训练和微调; 5. 深入跟踪调研多模态/NLP/LLM等方向的前沿技术相关内容。
团队介绍:广告业务原为商业产品与技术部门,为抖音集团的商业变现提供广告产品与技术,负责端到端大型广告系统建设,覆盖抖音、今日头条、西瓜视频、番茄小说、穿山甲等产品矩阵,践行“激发生意新可能”理念,致力于让营销更省心、更高效、更美好,推动商业的可持续增长,让不分体量、地域的企业及个体,都能通过数字化技术激发创造、驱动生意。连接广告主、用户及生态伙伴、成为开放共赢的全球最佳智能营销平台之一。在这里,你将投身建设面向未来的数字营销能力,接触到全球先进的商业产品架构、模型和算法,在互联网广告行业始终创新。 课题背景 在广告营销领域,智能客服系统正成为优化售前用户沟通的关键工具,商家亟需高效工具来减少人工依赖、提升转化效率。背景核心在于:广告营销的售前场景涉及复杂用户交互(如产品咨询、促销引导和留资获取),当前基于 LLM 的智能客服 Agent 系统采用 “规划 + 生成” 的架构,需完成从用户进线、诉求澄清到方案执行的全流程服务。然而,随着广告市场的动态变化和个性化需求增长,传统方法面临响应相关性不足、转化率瓶颈等问题。团队正聚焦于利用 LLM 后训练技术(如微调和强化学习),结合 RAG、CoT 蒸馏等手段,构建一套高适配性的 Agent 系统,以实现智能化用户沟通 —— 帮助商家自动促成订单或获取高质量线索,最终提升广告营销的 ROI 和用户体验。这一方向不仅是业务增长的核心驱动力,也是推动大模型在广告领域落地的关键创新。 课题挑战 本课题面临多重技术与业务挑战,需要人才在 LLM-Agent 架构下突破瓶颈,确保智能客服在广告营销场景中的高可靠性、高效性和合规性。具体挑战包括: 1)对话流程控制:售前咨询需通过多轮交互引导用户留资或促成订单,亟需优化 Agent 的决策能力。这要求强化planning的识别能力和action选择的准确性,需要引入 SOP 构建、CoT蒸馏、react与反思机制等,实现上下文一致性与业务目标达成。另外也需要构建合理的reward指标,应用DPO/RL等手段进一步提升模型决策能力; 2)回复质量与幻觉:售前咨询的回复模型需要在少量标注数据下产出高质量的训练数据,应用大模型微调SFT、CoT蒸馏提升在各个行业上的话术质量和回复满意度。应用RAG、知识图谱等能力构建高质量知识库,在线时通过精确知识点匹配解决冷启动与幻觉问题,提升用户体验; 3)个性化问题:目前传统智能客服对于不同用户的接待基本都是相同的,售前客服需要考虑不同用户的兴趣点,通过引入用户特征、构建长期memory等手段,为用户构建定制化的接待方案,提高用户满意度并促成留资或者订单等业务指标提升; 4)实时性能瓶颈:系统需处理高并发请求,但大模型的推理延迟和资源消耗可能影响用户体验。这要求研究模型压缩、量化技术、推理模型的cot加速等方向以优化部署效率。 研究方向:大语言模型。
团队介绍:广告业务原为商业产品与技术部门,为抖音集团的商业变现提供广告产品与技术,负责端到端大型广告系统建设,覆盖抖音、今日头条、西瓜视频、番茄小说、穿山甲等产品矩阵,践行“激发生意新可能”理念,致力于让营销更省心、更高效、更美好,推动商业的可持续增长,让不分体量、地域的企业及个体,都能通过数字化技术激发创造、驱动生意。连接广告主、用户及生态伙伴、成为开放共赢的全球最佳智能营销平台之一。在这里,你将投身建设面向未来的数字营销能力,接触到全球先进的商业产品架构、模型和算法,在互联网广告行业始终创新。 课题背景 在广告营销领域,智能客服系统正成为优化售前用户沟通的关键工具,商家亟需高效工具来减少人工依赖、提升转化效率。背景核心在于:广告营销的售前场景涉及复杂用户交互(如产品咨询、促销引导和留资获取),当前基于 LLM 的智能客服 Agent 系统采用 “规划 + 生成” 的架构,需完成从用户进线、诉求澄清到方案执行的全流程服务。然而,随着广告市场的动态变化和个性化需求增长,传统方法面临响应相关性不足、转化率瓶颈等问题。团队正聚焦于利用 LLM 后训练技术(如微调和强化学习),结合 RAG、CoT 蒸馏等手段,构建一套高适配性的 Agent 系统,以实现智能化用户沟通 —— 帮助商家自动促成订单或获取高质量线索,最终提升广告营销的 ROI 和用户体验。这一方向不仅是业务增长的核心驱动力,也是推动大模型在广告领域落地的关键创新。 课题挑战 本课题面临多重技术与业务挑战,需要人才在 LLM-Agent 架构下突破瓶颈,确保智能客服在广告营销场景中的高可靠性、高效性和合规性。具体挑战包括: 1)对话流程控制:售前咨询需通过多轮交互引导用户留资或促成订单,亟需优化 Agent 的决策能力。这要求强化planning的识别能力和action选择的准确性,需要引入 SOP 构建、CoT蒸馏、react与反思机制等,实现上下文一致性与业务目标达成。另外也需要构建合理的reward指标,应用DPO/RL等手段进一步提升模型决策能力; 2)回复质量与幻觉:售前咨询的回复模型需要在少量标注数据下产出高质量的训练数据,应用大模型微调SFT、CoT蒸馏提升在各个行业上的话术质量和回复满意度。应用RAG、知识图谱等能力构建高质量知识库,在线时通过精确知识点匹配解决冷启动与幻觉问题,提升用户体验; 3)个性化问题:目前传统智能客服对于不同用户的接待基本都是相同的,售前客服需要考虑不同用户的兴趣点,通过引入用户特征、构建长期memory等手段,为用户构建定制化的接待方案,提高用户满意度并促成留资或者订单等业务指标提升; 4)实时性能瓶颈:系统需处理高并发请求,但大模型的推理延迟和资源消耗可能影响用户体验。这要求研究模型压缩、量化技术、推理模型的cot加速等方向以优化部署效率。 研究方向:大语言模型。
1. 负责阿里店小蜜智能问答客服机器人的优化,利用大模型技术,结合业务需求和用户反馈,不断提升系统的智能化水平和用户体验; 2. 研究并应用最新的LLM技术、AI Agent框架,与产品和工程团队紧密合作,推动更先进更优秀的客服机器人对话产品策略的落地。