logo of aliyun

阿里云阿里云智能-GPU互连系统软件高级技术专家-上海/北京/深圳

社招全职7年以上云智能集团地点:北京 | 上海 | 深圳状态:招聘

任职要求


1. 计算机、软件、电子科学或相关专业,本科以上学历;
2. 超过5年的软件研发或架构设计经验;
3.精通C/C++/PythonCUDA,熟悉面向GPU编程或互连编程如RDMA、或NVSHMEM;
4. 具备跨团队研发协作/业务对接经验。
满足以下内容之一为加分项:
1. 熟悉GPU性能调优,或AI大模型训练、推理系统设计者优先;
2. 熟悉各类互连协议(如RDMA、Nvlink、PCIe、CXL)者优先;
3. 熟悉GPU体系结构者优先;
4. 熟悉交换芯片设计者优先。

工作职责


1.负责服务器GPU超节点软件系统方案,主导互连软件的架构设计、研发交付、应用优化(训练及推理场景下SHMEM技术,KV Cache,共享内存,互连传输软件)等, 参与模块实现,问题攻关;
2.参与下一代数据中心服务器超节点定义、如数据面软硬件协同方案;
3. 参与行业领先的互连标准定义,以及行业生态的推动及落地;
4. 参与创新研究,发表相关技术论文,申请专利。
包括英文材料
学历+
系统设计+
C+
C+++
Python+
CUDA+
大模型+
分布式系统+
性能调优+
相关职位

logo of aliyun
社招10年以上云智能集团

● 公共云计算作为基础设施为企业提供高效、安全、可靠的云服务,极大地提高了企业的运营效率和创新能力。阿里云作为全球化的公共云计算平台,在云网络领域也走在行业的前列。 ● 阿里云网络的洛神技术平台,基于软硬件一体化技术,云原生弹性NFV技术,大规模SDN网络管控技术,大数据智能网络分析平台,支撑了阿里云丰富的网络产品。 ● 本岗位负责阿里云网络架构设计和云网络技术创新。 1. 架构设计方面负责云网络架构技术领域的设计和规划,以及对现有架构进行梳理、评估和优化,推动架构演进,提升云网络技术竞争力。 2. 技术创新方面通过业务和技术洞察,分析云网络技术发展趋势,提炼对云网络的技术要求,对关键技术进行突破。

更新于 2025-08-08
logo of bytedance
校招A35384A

团队介绍:字节跳动STE团队一直致力于操作系统内核与虚拟化,系统基础软件与基础库的构建和性能优化、超大规模数据中心的系统稳定性和可靠性建设、新硬件与软件的协同设计等基础技术领域的研发与工程化落地,具备全面的基础软件工程能力,为字节上层业务保驾护航。 课题介绍: 背景:在当今数字化时代,随着云计算、人工智能和大数据技术的深度融合,现代数据中心正面临着指数级增长的算力需求与现有计算架构效能瓶颈之间的突出矛盾。传统以通用CPU为核心的体系架构在应对多样化负载时,暴露出诸多问题。例如,内存子系统带宽与时延约束导致的 “内存墙” 效应持续加剧,异构计算单元间的数据搬运开销占比超过实际运算时间,安全可信执行环境带来的性能损耗超过 30%,单机柜算力密度提升受限于功耗密度阈值。与此同时,新兴工作负载如AI训练、图计算、时序数据库等呈现出动态异构特征,对计算架构提出了差异化需求,传统固定架构难以实现最优能效比。 操作系统作为计算机体系结构下重要的软件基础设施与核心技术,在这样的背景下也面临着巨大的挑战。随着计算需求的增长和技术的进步,传统的同构计算环境已无法满足日益复杂的计算任务。现代计算场景中,硬件架构呈现高度异构化,包括 CPU、GPU、FPGA、TPU、NPU、DPU 等,同时边缘计算、云计算形成分布式网络。传统操作系统难以高效管理跨节点、跨架构的资源。加之人工智能训练等场景需要低延迟、高吞吐、安全可信,动态弹性的分布式系统支持,这就要求操作系统具备跨异构资源的统一抽象与调度能力。学术界和工业界对下一代计算机操作系统在分布式微内核架构,异构资源调度算法,跨层优化与编译器支持,安全可信技术,虚拟化和 Serverless,AI 驱动操作系统内核优化以及操作系统内置 AI 推理引擎等方面展开了积极的探索和研究。 课题挑战: 方向一:体系化结构方向 1)负载特征与架构优化:建立数据中心动态负载特征建模框架,深入研究面向数据中心Workload的体系结构设计与优化方法,使系统能够更好地适应多样化的负载需求; 2)CPU核心架构创新:研究高性能低功耗CPU核心架构,积极探索超标量流水线与数据流引擎的融合设计,提升CPU的性能和能效; 3)新型内存层次构建:构建支持存算一体化的新型内存层次结构,研究基于3D堆叠技术的近存计算架构,重点突破高带宽互连拓扑优化、混合内存控制器设计、内存访问模式预测算法,解决 “内存墙” 等问题; 4)安全可信架构构建:构建安全可信计算架构,包括侧信道攻击防御的微架构级实现、侧信道安全架构、自动侧 / 隐蔽通道泄漏检测,确保系统在复杂环境下的安全性和完整性; 5)数据中心架构创新:探索整机柜级系统总线扩展,构建内存语义互联的新型数据中心架构,研究基于新型总线协议 (CXL/UALink) 的全局内存共享机制,提升数据中心的整体性能和资源利用率; 6)可靠性增强技术研究:研究可靠性增强技术,包括开发基于机器学习的故障预测模型,设计自修复的微架构容错机制,研究硬件静默故障检测,以及系统及IP可靠性特性研究和数据分析,保障系统的稳定运行。 方向二:操作系统方向 1)操作系统关键技术突破:突破传统单机操作系统存在的硬件资源利用局限、功能扩展与升级运维复杂、数据管理与共享不足、安全性与可靠性欠佳等问题。在计算高度异构以及计算环境分布化的情况下,从硬件到软件建立完整的信任链,保证整个系统的安全性和完整性。同时,有效地管理和协调多个节点间的通信、数据同步及故障恢复,设计高效的调度算法来匹配任务需求与最适合的计算资源,以最大化性能和效率。操作系统需要能够理解不同类型的计算任务,并能根据实时的工作负载动态调整资源分配,实现跨异构资源的统一抽象与调度; 2)跨领域知识融合:本课题需要融合 OS、内核、算法、存储、虚拟化、网络、系统工程等多方面的跨领域知识和经验,以实现数据中心智能计算体系结构与操作系统的协同创新。

更新于 2025-05-14
logo of bytedance
校招A65740

团队介绍:字节跳动STE团队一直致力于操作系统内核与虚拟化,系统基础软件与基础库的构建和性能优化、超大规模数据中心的系统稳定性和可靠性建设、新硬件与软件的协同设计等基础技术领域的研发与工程化落地,具备全面的基础软件工程能力,为字节上层业务保驾护航。 课题介绍: 背景:在当今数字化时代,随着云计算、人工智能和大数据技术的深度融合,现代数据中心正面临着指数级增长的算力需求与现有计算架构效能瓶颈之间的突出矛盾。传统以通用CPU为核心的体系架构在应对多样化负载时,暴露出诸多问题。例如,内存子系统带宽与时延约束导致的 “内存墙” 效应持续加剧,异构计算单元间的数据搬运开销占比超过实际运算时间,安全可信执行环境带来的性能损耗超过 30%,单机柜算力密度提升受限于功耗密度阈值。与此同时,新兴工作负载如AI训练、图计算、时序数据库等呈现出动态异构特征,对计算架构提出了差异化需求,传统固定架构难以实现最优能效比。 操作系统作为计算机体系结构下重要的软件基础设施与核心技术,在这样的背景下也面临着巨大的挑战。随着计算需求的增长和技术的进步,传统的同构计算环境已无法满足日益复杂的计算任务。现代计算场景中,硬件架构呈现高度异构化,包括 CPU、GPU、FPGA、TPU、NPU、DPU 等,同时边缘计算、云计算形成分布式网络。传统操作系统难以高效管理跨节点、跨架构的资源。加之人工智能训练等场景需要低延迟、高吞吐、安全可信,动态弹性的分布式系统支持,这就要求操作系统具备跨异构资源的统一抽象与调度能力。学术界和工业界对下一代计算机操作系统在分布式微内核架构,异构资源调度算法,跨层优化与编译器支持,安全可信技术,虚拟化和 Serverless,AI 驱动操作系统内核优化以及操作系统内置 AI 推理引擎等方面展开了积极的探索和研究。 课题挑战: 方向一:体系化结构方向 1)负载特征与架构优化:建立数据中心动态负载特征建模框架,深入研究面向数据中心Workload的体系结构设计与优化方法,使系统能够更好地适应多样化的负载需求; 2)CPU核心架构创新:研究高性能低功耗CPU核心架构,积极探索超标量流水线与数据流引擎的融合设计,提升CPU的性能和能效; 3)新型内存层次构建:构建支持存算一体化的新型内存层次结构,研究基于3D堆叠技术的近存计算架构,重点突破高带宽互连拓扑优化、混合内存控制器设计、内存访问模式预测算法,解决 “内存墙” 等问题; 4)安全可信架构构建:构建安全可信计算架构,包括侧信道攻击防御的微架构级实现、侧信道安全架构、自动侧 / 隐蔽通道泄漏检测,确保系统在复杂环境下的安全性和完整性; 5)数据中心架构创新:探索整机柜级系统总线扩展,构建内存语义互联的新型数据中心架构,研究基于新型总线协议 (CXL/UALink) 的全局内存共享机制,提升数据中心的整体性能和资源利用率; 6)可靠性增强技术研究:研究可靠性增强技术,包括开发基于机器学习的故障预测模型,设计自修复的微架构容错机制,研究硬件静默故障检测,以及系统及IP可靠性特性研究和数据分析,保障系统的稳定运行。 方向二:操作系统方向 1)操作系统关键技术突破:突破传统单机操作系统存在的硬件资源利用局限、功能扩展与升级运维复杂、数据管理与共享不足、安全性与可靠性欠佳等问题。在计算高度异构以及计算环境分布化的情况下,从硬件到软件建立完整的信任链,保证整个系统的安全性和完整性。同时,有效地管理和协调多个节点间的通信、数据同步及故障恢复,设计高效的调度算法来匹配任务需求与最适合的计算资源,以最大化性能和效率。操作系统需要能够理解不同类型的计算任务,并能根据实时的工作负载动态调整资源分配,实现跨异构资源的统一抽象与调度; 2)跨领域知识融合:本课题需要融合 OS、内核、算法、存储、虚拟化、网络、系统工程等多方面的跨领域知识和经验,以实现数据中心智能计算体系结构与操作系统的协同创新。

更新于 2025-05-14
logo of bytedance
校招A231110

团队介绍:字节跳动STE团队一直致力于操作系统内核与虚拟化,系统基础软件与基础库的构建和性能优化、超大规模数据中心的系统稳定性和可靠性建设、新硬件与软件的协同设计等基础技术领域的研发与工程化落地,具备全面的基础软件工程能力,为字节上层业务保驾护航。 课题介绍: 背景:在当今数字化时代,随着云计算、人工智能和大数据技术的深度融合,现代数据中心正面临着指数级增长的算力需求与现有计算架构效能瓶颈之间的突出矛盾。传统以通用CPU为核心的体系架构在应对多样化负载时,暴露出诸多问题。例如,内存子系统带宽与时延约束导致的 “内存墙” 效应持续加剧,异构计算单元间的数据搬运开销占比超过实际运算时间,安全可信执行环境带来的性能损耗超过 30%,单机柜算力密度提升受限于功耗密度阈值。与此同时,新兴工作负载如AI训练、图计算、时序数据库等呈现出动态异构特征,对计算架构提出了差异化需求,传统固定架构难以实现最优能效比。 操作系统作为计算机体系结构下重要的软件基础设施与核心技术,在这样的背景下也面临着巨大的挑战。随着计算需求的增长和技术的进步,传统的同构计算环境已无法满足日益复杂的计算任务。现代计算场景中,硬件架构呈现高度异构化,包括 CPU、GPU、FPGA、TPU、NPU、DPU 等,同时边缘计算、云计算形成分布式网络。传统操作系统难以高效管理跨节点、跨架构的资源。加之人工智能训练等场景需要低延迟、高吞吐、安全可信,动态弹性的分布式系统支持,这就要求操作系统具备跨异构资源的统一抽象与调度能力。学术界和工业界对下一代计算机操作系统在分布式微内核架构,异构资源调度算法,跨层优化与编译器支持,安全可信技术,虚拟化和 Serverless,AI 驱动操作系统内核优化以及操作系统内置 AI 推理引擎等方面展开了积极的探索和研究。 课题挑战: 方向一:体系化结构方向 1)负载特征与架构优化:建立数据中心动态负载特征建模框架,深入研究面向数据中心Workload的体系结构设计与优化方法,使系统能够更好地适应多样化的负载需求; 2)CPU核心架构创新:研究高性能低功耗CPU核心架构,积极探索超标量流水线与数据流引擎的融合设计,提升CPU的性能和能效; 3)新型内存层次构建:构建支持存算一体化的新型内存层次结构,研究基于3D堆叠技术的近存计算架构,重点突破高带宽互连拓扑优化、混合内存控制器设计、内存访问模式预测算法,解决 “内存墙” 等问题; 4)安全可信架构构建:构建安全可信计算架构,包括侧信道攻击防御的微架构级实现、侧信道安全架构、自动侧 / 隐蔽通道泄漏检测,确保系统在复杂环境下的安全性和完整性; 5)数据中心架构创新:探索整机柜级系统总线扩展,构建内存语义互联的新型数据中心架构,研究基于新型总线协议 (CXL/UALink) 的全局内存共享机制,提升数据中心的整体性能和资源利用率; 6)可靠性增强技术研究:研究可靠性增强技术,包括开发基于机器学习的故障预测模型,设计自修复的微架构容错机制,研究硬件静默故障检测,以及系统及IP可靠性特性研究和数据分析,保障系统的稳定运行。 方向二:操作系统方向 1)操作系统关键技术突破:突破传统单机操作系统存在的硬件资源利用局限、功能扩展与升级运维复杂、数据管理与共享不足、安全性与可靠性欠佳等问题。在计算高度异构以及计算环境分布化的情况下,从硬件到软件建立完整的信任链,保证整个系统的安全性和完整性。同时,有效地管理和协调多个节点间的通信、数据同步及故障恢复,设计高效的调度算法来匹配任务需求与最适合的计算资源,以最大化性能和效率。操作系统需要能够理解不同类型的计算任务,并能根据实时的工作负载动态调整资源分配,实现跨异构资源的统一抽象与调度; 2)跨领域知识融合:本课题需要融合 OS、内核、算法、存储、虚拟化、网络、系统工程等多方面的跨领域知识和经验,以实现数据中心智能计算体系结构与操作系统的协同创新。

更新于 2025-05-14