阿里云研究型实习生 - 多时间尺度的智能化数据库性能调优
任职要求
1、针对PolarDB实现的原型系统及源码; 2、相关技术方案申请专利; 3、研究成果发表CCF-A类会议或期刊论文。
工作职责
发现数据库系统的性能瓶颈并作出针对性优化是一项重要工作。随着各类智能算法的发展和应用,学术界和业界也逐渐开始利用智能算法优化数据库系统中的各种模块,我们也考虑在实际产品中实现智能化数据库调优能力,项目内容包括但不局限于: 1、数据库可观察性接口:云原生数据库系统含有多种资源,针对性能问题实现系统可观测接口,数据收集与清洗; 2、数据库可操控性接口:定量化数据库系统对外提供的可操控接口特性; 3、多时间尺度的数据库性能分析模型:需要将已有的系统可观察性和可操控性模型化、定量化,建立多时间尺度的系统状态评估模型和状态迁移模型; 4、具有特征性的数据库性能调优算法:基于已有的可观、可控接口及数据库性能模型,设计并实现用于智能化自适应的数据库性能调优算法。
研究领域: 人工智能 项目简介: 近年来,大语言模型和多模态大模型的迅速发展解锁了众多应用场景,包括视觉指令跟随和长视频理解,最近的一些开源方法也已经在提升流式视频处理能力方面有所进展,但它们在交互流畅性和感知能力方面仍然存在不足。本项目旨在对流式视频理解和交互方向加大投入,在多模态大模型视觉内容理解、动态变化跟踪和精确时间对齐等方面进行算法创新,并尝试挖掘其对视频交互中风险动作和风险对话的识别能力,为依赖视频交互能力的各业务场景带来新的突破。
希望解决如下技术问题。 1、适用于商品视频生成的文本-视频数据集:构建一个能够支持基于多模态大模型的商品视频生成算法训练和优化的文本-视频数据集 2. 基于多模态大模型的商品视频生成系统:通过探索基于多模态大模型的文本到视频生成技术,以“视频关键帧-高帧率视频-高分辨率视频”为基本路径,完成文本到视频关键帧生成模型、视频插帧模型、视频超分辨率生成模型等核心算法模型,构建视频生成系统,实现输入商品描述文本+商品图片,自动生成原生化的商品微视频和商品短视频。
我们正在寻找对人工智能、多模态数据处理、系统性能优化感兴趣的实习生,参与一个面向多模态数据获取、解析、压缩与高效传输的研究课题。该课题聚焦于提升多模态系统在复杂环境下的实时性表现与资源利用率,具有广泛的应用前景(如智能运维、RAG检索增强生成、边缘计算等)。你将参与的工作包括但不限于: 1. 多模态数据采集与预处理:从网页、API、数据库、摄像头、麦克风等来源获取文本、图像、音频和视频数据; 2. 多模态数据解析与特征提取:使用OCR、ASR、NLP、CV等技术解析不同模态内容; 3. 模型轻量化与加速:探索基于Transformer、CNN、LSTM等模型的压缩、蒸馏、量化方法; 4. 系统级优化与部署:设计低延迟、低资源占用的数据处理流程,支持在边缘设备上运行; 5. 性能评估与实验分析:构建测试集,评估系统的吞吐量、响应时间、准确率等关键指标; 6. 撰写技术文档与研究报告:整理实验过程、结果与改进建议。 技术要求(优先但不强制): 1. 熟悉Python编程语言,有良好的代码规范; 2. 了解基本的NLP、CV或语音识别技术; 3. 掌握至少一种深度学习框架(PyTorch/TensorFlow); 4. 熟悉Linux系统及常用命令行工具。 有以下经验者优先考虑: 1. 多模态任务处理经验(如CLIP、Flamingo等); 2. 模型压缩与部署经验(如TensorRT、ONNX、OpenVINO、TVM等); 3. 使用过音视频处理工具(如FFmpeg、OpenCV、Whisper、YOLO等); 4. 有一定系统编程能力(C/C++、CUDA、FPGA基础)。
当前大模型(LLMs/MLLMs)在长对话和复杂任务链中面临上下文窗口限制和遗忘问题。尽管扩大上下文长度有所帮助,但其计算和推理成本高昂,且难以实现真正意义上的终身学习和经验累积。另一方面,现有模型在交互中往往缺乏个性化的体验,无法有效地捕捉、存储和召回与特定用户、特定场景相关的多模态经验。为了使大模型具备像人类一样从持续交互中学习、积累和灵活调度的能力,并实现从通用助手到私人智能伙伴的跃升,亟需构建一个高效、多层次、时间敏感的多模态记忆系统。这不仅能突破输入长度限制,还能通过跨模态信息的整合和知识的结构化,大幅提升模型在复杂场景下的鲁棒性、泛化能力和自我进化能力。 大模型多模态记忆增强研究项目,团队在多个方向上进行探索,若你对以下一个或多个课题感兴趣均欢迎投递: 1. 多层次记忆的构建与管理 2. 多模态记忆的嵌入与召回 3. 时间敏感的记忆调度策略 4. 记忆智能体(Memory Agent)的构建