
商汤26届AI领航员-研究院-大模型算法研究员(模型优化)
校招全职算法研究地点:北京 | 上海 | 深圳状态:招聘
任职要求
1.学术背景:拥有计算机科学、人工智能、机器学习或相关领域的硕士或博士学位; 2.技术经验:具有丰富的机器学习模型训练经验,特别是在RLHF、自适应学习、在线学习、持续学习和元学习等先进学习策略方面; 3.编程能力:熟练掌握Python、Java或C++等高级编程语言,并具备使用TensorFlow、PyTorch等主流机器学习框架的实战经验; 4.数据处理:具备强大的数据处理能力,熟悉SQL、NoSQL数据库操作,以及数据处理技术如Pandas、NumPy、PySpark; 5.系统设计:能够设计和实施大规模数据监控和处理系统,具有优化数据流和数据架构的经验; 6.问题解决能力:具备出色的分析和问题解决能力,能够在复杂的数据环境中识别问题、分析原因并提出有效的解决方案; 7.团队合作:具有良好的团队合作精神,能够与数据科学家、工程师和项目管理人员有效沟通,共同推动项目成功; 8.持续学习:对新技术有强烈的好奇心和学习欲望,能够快速掌握和应用最新的技术或算法改进模型性能; 9.经验优先:具有相关行业工作经验或在相关领域发表过研究论文者优先考虑。
工作职责
1.负责开发和研究模型自我优化与进化的算法,通过引入先进的自适应学习技术和进化策略,实现模型在面对新数据时的自动调整和优化; 2.设计和实施自我进化机制,包括但不限于在线学习、持续学习和元学习策略,以提升模型对新环境和新任务的适应性; 3.通过周期性的模型评估和反馈循环,确保模型在实际应用中的性能持续提升,同时解决模型过时的问题; 4.负责大模型训练数据生成及管理,包括合成数据生成和真实数据的收集与清洗; 5.负责建立和维护数据处理流程,以提高数据质量和训练效率; 6.负责开发和优化数据监控系统,进行日志数据的智能分析,及时发现并解决数据处理过程中的问题。 7.与数据科学团队合作,确保模型进化策略与数据获取、处理和分析策略的一致性,从而优化整个模型的学习效率和效果。
包括英文材料
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
学历+
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
Java+
https://www.youtube.com/watch?v=eIrMbAQSU34
Master Java – a must-have language for software development, Android apps, and more! ☕️ This beginner-friendly course takes you from basics to real coding skills.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
SQL+
https://liaoxuefeng.com/books/sql/introduction/index.html
什么是SQL?简单地说,SQL就是访问和处理关系数据库的计算机标准语言。
https://sqlbolt.com/
Learn SQL with simple, interactive exercises.
https://www.youtube.com/watch?v=p3qvj9hO_Bo
In this video we will cover everything you need to know about SQL in only 60 minutes.
NoSQL+
https://nosql-database.org/
Everything about NoSQL Systems – Types, Benefits, and Real-World Uses
https://piaosanlang.gitbooks.io/mongodb/content/section1.1.html
NoSQL(NoSQL = Not Only SQL ),即"不仅仅是SQL",指的是非关系型的数据库。是对不同于传统的关系型数据库管理系统的统称。
https://www.youtube.com/watch?v=0buKQHokLK8
NoSQL databases can operate in multiple modes: as key-value store, document store or wide column store.
Pandas+
[英文] 10 minutes to pandas
https://pandas.pydata.org/docs/user_guide/10min.html
This is a short introduction to pandas, geared mainly for new users.
[英文] Cookbook - pandas
https://pandas.pydata.org/docs/user_guide/cookbook.html#cookbook
This is a repository for short and sweet examples and links for useful pandas recipes.
https://www.kaggle.com/learn/pandas
Solve short hands-on challenges to perfect your data manipulation skills.
https://www.youtube.com/watch?v=2uvysYbKdjM
I'm super excited for this one. We're doing another complete Python Pandas tutorial walkthrough.
https://www.youtube.com/watch?v=Mdq1WWSdUtw
Filtering, Joins, Indexing, Data Cleaning, Visualizations
NumPy+
https://numpy.org/doc/stable/user/absolute_beginners.html
NumPy (Numerical Python) is an open source Python library that’s widely used in science and engineering.
[英文] NumPy - Learn
https://numpy.org/learn/
Below is a curated collection of educational resources, both for self-learning and teaching others, developed by NumPy contributors and vetted by the community.
https://www.kaggle.com/code/themlphdstudent/learn-numpy-numpy-50-exercises-and-solution
This kernel uses exercises of NumPy from the Machine Learning Plus webpage
https://www.youtube.com/watch?v=KHoEbRH46Zk
If you've heard of Pandas and NumPy, you may think one is simply a superset of the other.
https://www.youtube.com/watch?v=QUT1VHiLmmI
Learn the basics of the NumPy library in this tutorial for beginners.
https://www.youtube.com/watch?v=VXU4LSAQDSc
This video serves as an introduction to the NumPy Python library.
系统设计+
https://roadmap.sh/system-design
Everything you need to know about designing large scale systems.
https://www.youtube.com/watch?v=F2FmTdLtb_4
This complete system design tutorial covers scalability, reliability, data handling, and high-level architecture with clear explanations, real-world examples, and practical strategies.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
相关职位

校招算法研究
1. 负责大模型算法框架的研发,整体提升算法框架训练效率,跟进最近的训练技术; 2. 负责探索MOE、RLHF 等相关对齐技术,提升模型的最终效果; 3. 负责多模态模型和Function Call 模型的联合训练,整体优化多模态模型和语言模型联合训练。
更新于 2025-07-28

校招算法研究
1. 负责模型压缩算法的研发和实现,包括但不限于模型量化、剪枝、蒸馏等; 2. 负责业务模型在多种场景及对应各异的芯片上的压缩精度提升和保持,包括AIGC(LLM / Stable Diffusion)模型,自动驾驶模型、手机端侧模型等; 3. 负责开发和维护LLM量化部署工具链,调研、复现业界最新的算法,集成工具,并在实际业务中落地, 助力大模型在各个产品线中的应用; 4. 通过分析模型与部署硬件特点,使用软硬结合的优化方案提升模型的速度与精度表现,提升模型压缩能力上限。
更新于 2025-08-21

校招算法研究
1. 负责实现和迭代自然语言处理相关算法,支撑企业数字化业务中的自然语言理解和生成需求,例如信息抽取、文档分析、检索问答、对话交互等; 2. 与工程团队协作,将算法集成到产品中,支撑金融业务场景的迭代优化; 3. 负责某一细分领域的深入算法研究,包括但不限于基础模型开发、对齐研究、推理优化、SFT训练及Agent智能体开发; 4. 设计和开发基于大语言模型(LLM)的智能Agent,优化其在金融场景中的任务规划、工具调用及自主决策能力; 5. 维护相关研究和业务方向的基准(代码、数据、Prompt/Instruction等),将创新算法沉淀为论文、技术报告或专利。
更新于 2025-08-21