小鹏汽车【探索者】碰撞分析工程师
任职要求
任职要求: 1.车辆工程/机械工程/力学/材料等相关专业 2.渴望在敏捷、多元化的环境中工作; 3.能够快速学习,拥有广泛…
工作职责
职责描述: 1、负责整车碰撞安全仿真分析; 2、参与碰撞安全/行人保护试验设计及跟踪; 3、参与结构耐撞性/行人保护分析标准制定及修订。
团队介绍:短视频平台算法团队,负责国际化短视频产品的基础推荐算法,加入我们,你能接触到包括用户增长、社交、直播、电商C端、内容创造、内容消费等核心业务场景,直接为核心用户体验负责,支持产品在全球赛道上高速发展。我们的工作内容包括大规模推荐算法的优化、复杂约束的优化问题的解决、多模态大模型的落地探索,推荐大模型的应用研究等多个学术领域的算法改进以及对多种场景的推荐架构的设计和对产品数据的复杂深入的分析。在这里,你可以深入钻研机器学习算法的改进和优化,探索前沿的技术;可以跟来自全球不同国家的团队合作, 感受不同文化的碰撞, 激发认知;可以通过对产品和内容生态的深度分析,影响产品未来的发展方向。 课题介绍: 随着硬件算力的发展以及大模型在CV/NLP/多模态以至于AGI领域的不断突破,推荐场景下的大算力驱动能够帮助模型更全面深刻理解用户偏好,进而更好地理解用户需求,挖掘用户潜在兴趣,进而带来更好地用户体验。排序模块作为整个短视频推荐系统中非常重要的一环,承载着用户与视频之间的细粒度匹配挖掘进而挑选出用户最感兴趣的视频。如何找到合适的路径来最大化大算力下模型的记忆、泛化、推理能力,成为了研究的重中之重。 1、设计并实现最前沿的适合推荐系统的深度神经网络; 2、紧跟行业前端科研,推动优化推荐大模型训练、推理效率; 3、分析基础数据,完善基础特征,挖掘用户兴趣、内容价值,提高推荐系统的天花板; 4、端到端优化推荐大模型链路,改进短视频推荐系统,优化数十亿用户的使用体验。
团队介绍:短视频平台算法团队,负责国际化短视频产品的基础推荐算法,加入我们,你能接触到包括用户增长、社交、直播、电商C端、内容创造、内容消费等核心业务场景,直接为核心用户体验负责,支持产品在全球赛道上高速发展。我们的工作内容包括大规模推荐算法的优化、复杂约束的优化问题的解决、多模态大模型的落地探索,推荐大模型的应用研究等多个学术领域的算法改进以及对多种场景的推荐架构的设计和对产品数据的复杂深入的分析。在这里,你可以深入钻研机器学习算法的改进和优化,探索前沿的技术;可以跟来自全球不同国家的团队合作, 感受不同文化的碰撞, 激发认知;可以通过对产品和内容生态的深度分析,影响产品未来的发展方向。 课题介绍: 随着硬件算力的发展以及大模型在CV/NLP/多模态以至于AGI领域的不断突破,推荐场景下的大算力驱动能够帮助模型更全面深刻理解用户偏好,进而更好地理解用户需求,挖掘用户潜在兴趣,进而带来更好地用户体验。排序模块作为整个短视频推荐系统中非常重要的一环,承载着用户与视频之间的细粒度匹配挖掘进而挑选出用户最感兴趣的视频。如何找到合适的路径来最大化大算力下模型的记忆、泛化、推理能力,成为了研究的重中之重。 1、设计并实现最前沿的适合推荐系统的深度神经网络; 2、紧跟行业前端科研,推动优化推荐大模型训练、推理效率; 3、分析基础数据,完善基础特征,挖掘用户兴趣、内容价值,提高推荐系统的天花板; 4、端到端优化推荐大模型链路,改进短视频推荐系统,优化数十亿用户的使用体验。
团队介绍:短视频平台算法团队,负责国际化短视频产品的基础推荐算法,加入我们,你能接触到包括用户增长、社交、直播、电商C端、内容创造、内容消费等核心业务场景,直接为核心用户体验负责,支持产品在全球赛道上高速发展。我们的工作内容包括大规模推荐算法的优化、复杂约束的优化问题的解决、多模态大模型的落地探索,推荐大模型的应用研究等多个学术领域的算法改进以及对多种场景的推荐架构的设计和对产品数据的复杂深入的分析。在这里,你可以深入钻研机器学习算法的改进和优化,探索前沿的技术;可以跟来自全球不同国家的团队合作, 感受不同文化的碰撞, 激发认知;可以通过对产品和内容生态的深度分析,影响产品未来的发展方向。 课题介绍: 随着硬件算力的发展以及大模型在CV/NLP/多模态以至于AGI领域的不断突破,推荐场景下的大算力驱动能够帮助模型更全面深刻理解用户偏好,进而更好地理解用户需求,挖掘用户潜在兴趣,进而带来更好地用户体验。排序模块作为整个短视频推荐系统中非常重要的一环,承载着用户与视频之间的细粒度匹配挖掘进而挑选出用户最感兴趣的视频。如何找到合适的路径来最大化大算力下模型的记忆、泛化、推理能力,成为了研究的重中之重。 1、设计并实现最前沿的适合推荐系统的深度神经网络; 2、紧跟行业前端科研,推动优化推荐大模型训练、推理效率; 3、分析基础数据,完善基础特征,挖掘用户兴趣、内容价值,提高推荐系统的天花板; 4、端到端优化推荐大模型链路,改进短视频推荐系统,优化数十亿用户的使用体验。