小鹏汽车【26届校招】大模型应用工程师
任职要求
1.教育背景:计算机、机器人、自动化、电子工程、数学等相关专业硕士及以上学历 2. 技术能力: 熟练掌握深度学习、强化学习、经典规划算法(如A*、LQR、MPC、Lattice Planner等) 熟悉主流框架(PyTorch),具备模型训练、调优和部署经验 编程能力扎实(Python/C++),熟悉Linux开发环境 加分项 顶会论文(CVPR/ICRA/CoRL/IROS等)或专利 熟悉大语言模型(LLM)在规划中的应用(如场景理解、决策推理) 有量产项目经验或车规级部署经验
工作职责
1. 算法开发与优化: 负责自动驾驶模型算法的研发设计,包括但不限于行为决策、轨迹生成、运动规划等模块的深度学习/强化学习模型设计 探索基于Transformer、模仿学习(Imitation Learning)、强化学习(RL)等前沿技术的模型算法设计、应用方案 优化自动驾驶算法的实时性、安全性和舒适性,解决复杂场景(如拥堵、交互博弈、长尾问题)下的规划挑战 2.数据驱动迭代: 构建和利用大规模驾驶数据集(仿真+真实数据),设计数据闭环 pipeline 提升规划性能 参与数据标注、场景挖掘、仿真测试等环节,推动算法迭代 3.系统集成与部署: 与感知、控制等模块团队协作,实现模型算法在车载计算平台的部署 支持实车测试,分析问题并提出改进方案 4.前沿技术跟踪: 跟进学术界(如CVPR、ICRA、CoRL、IROS等)和工业界最新进展,将创新技术落地到量产或研发项目中
我们正在寻找对大语言模型(LLM)的应用落地、效果调优和系统效能提升充满热情的工程师。您将加入我们的核心研发团队,主要负责将先进的 LLM 技术转化为实际的业务价值,特别是在指令微调(SFT)、智能体(AI Agent)的设计与部署,以及应用基础设施(Infra)的优化。我们的目标是打造高效、可靠、智能的 LLM 应用解决方案,加速模型在人形机器人、自动驾驶、多模态等前沿领域的落地。 1. LLM 微调与应用落地:负责设计并执行 LLM 的指令微调(SFT)和对齐(如 RLHF/DPO)实验,以提升模型在特定应用场景(如代码生成、复杂推理、对话)的表现。主导模型效果的评估体系搭建和优化,确保模型输出的准确性、安全性和一致性。 2. 云端训练框架与效率优化:主导 LLM 微调(SFT/对齐)流程在云端环境下的效率优化,包括数据加载、多机通信、资源调度、框架稳定性等方面,确保 SFT 流程的高效、稳定和低成本运行。 3. 前沿应用技术追踪:紧密追踪 LLM 在 Agent 框架、长上下文处理、多模态交互等应用层面的最新研究与工程实践,并将其快速引入到产品线。 4. AI Agent 研发与部署:探索并实践基于 LLM 的 AI Agent(智能体) 框架,包括工具调用(Tool Use/Function Calling)、规划(Planning)、记忆(Memory)等核心模块的设计与实现。将开发的 Agent 系统集成到实际产品或业务流程中,提升自动化和智能决策能力。 5. 跨团队协作:与算法、数据和产品团队紧密合作,将模型优化成果快速产品化,并收集应用层的反馈来指导下一轮模型迭代。
1.参与自动驾驶系统中机器学习算法的研究、开发与优化,包括但不限于深度学习算法在端到端感知大模型、规控大模型、视觉语言大模型等方面的应用; 2.负责收集、整理和分析自动驾驶相关的数据集,进行数据预处理和标注,以提高模型的准确性和泛化能力; 3.设计和实现机器学习模型的训练流程,包括选择合适的优化算法、调整超参数、评估模型性能等,确保模型在不同场景下的稳定性和可靠性。