小鹏汽车分布式强化学习算法工程师
社招全职智能机器人板块地点:深圳 | 上海状态:招聘
任职要求
职位要求: 1. 有大规模分布式训练系统开发经验(Ray、Horovod、Parameter Server等); 2. 熟悉多智能体强化学习、层次强化学习、元学习等前沿方向; 3. 有GPU集群管理和优化经验,了解CUDA编程; 4. 发表过强化学习相关的顶级会议论文(ICML、NeurIPS、ICLR等); 5. 有实际RL项目落地经验(游戏AI、机器人、自动驾驶等); 6. 熟悉Kubernetes、Docker等容器化技术。
工作职责
我们正在寻找在分布式强化学习领域具有深厚技术背景的工程师,负责设计和实现大规模分布式强化学习系统。您将参与前沿AI技术的研发,推动强化学习在实际业务场景中的落地应用,包括但不限于自动驾驶、机器人控制、大模型训练等领域。 1. 设计和实现先进的分布式强化学习算法(PPO、SAC、IMPALA、Ape-X等); 2. 研究多智能体强化学习(MARL)算法和协调机制; 3. 优化采样效率和训练稳定性,解决稀疏奖励和探索难题; 4. 跟踪学术前沿,将最新研究成果转化为工程实现; 5. 设计高性能分布式训练架构,支持千核级别的并行训练; 6. 实现异步参数更新、经验回放和梯度聚合机制; 7. 优化通信拓扑和数据流,降低网络延迟和带宽消耗; 8. 构建弹性可扩展的训练集群,支持动态资源调度。
包括英文材料
Ray+
https://github.com/ray-project/ray
Ray consists of a core distributed runtime and a set of AI Libraries for accelerating ML workloads.
https://www.youtube.com/watch?v=FhXfEXUUQp0
In this video, I'll teach you everything you need to know about Apache Ray!
https://www.youtube.com/watch?v=fMiAyj2kgac
Using powerful machine learning algorithms is easy using Ray.io and Python.
https://www.youtube.com/watch?v=q_aTbb7XeL4
Parallel and Distributed computing sounds scary until you try this fantastic Python library.
智能体+
https://learn.microsoft.com/en-us/shows/ai-agents-for-beginners/
In this 10-lesson course we take you from concept to code while covering the fundamentals of building AI agents.
https://www.ibm.com/think/ai-agents
Your one-stop resource for gaining in-depth knowledge and hands-on applications of AI agents.
强化学习+
https://cloud.google.com/discover/what-is-reinforcement-learning?hl=en
Reinforcement learning (RL) is a type of machine learning where an "agent" learns optimal behavior through interaction with its environment.
https://huggingface.co/learn/deep-rl-course/unit0/introduction
This course will teach you about Deep Reinforcement Learning from beginner to expert. It’s completely free and open-source!
https://www.kaggle.com/learn/intro-to-game-ai-and-reinforcement-learning
Build your own video game bots, using classic and cutting-edge algorithms.
CUDA+
https://developer.nvidia.com/blog/even-easier-introduction-cuda/
This post is a super simple introduction to CUDA, the popular parallel computing platform and programming model from NVIDIA.
https://www.youtube.com/watch?v=86FAWCzIe_4
Lean how to program with Nvidia CUDA and leverage GPUs for high-performance computing and deep learning.
ICML+
https://icml.cc/
NeurIPS+
https://neurips.cc/
ICLR+
https://iclr.cc/
自动驾驶+
https://www.youtube.com/watch?v=_q4WUxgwDeg&list=PL05umP7R6ij321zzKXK6XCQXAaaYjQbzr
Lecture: Self-Driving Cars (Prof. Andreas Geiger, University of Tübingen)
https://www.youtube.com/watch?v=NkI9ia2cLhc&list=PLB0Tybl0UNfYoJE7ZwsBQoDIG4YN9ptyY
You will learn to make a self-driving car simulation by implementing every component one by one. I will teach you how to implement the car driving mechanics, how to define the environment, how to simulate some sensors, how to detect collisions and how to make the car control itself using a neural network.
Kubernetes+
https://kubernetes.io/docs/tutorials/kubernetes-basics/
This tutorial provides a walkthrough of the basics of the Kubernetes cluster orchestration system.
https://kubernetes.io/zh-cn/docs/tutorials/kubernetes-basics/
本教程介绍 Kubernetes 集群编排系统的基础知识。每个模块包含关于 Kubernetes 主要特性和概念的一些背景信息,还包括一个在线教程供你学习。
https://www.youtube.com/watch?v=s_o8dwzRlu4
Hands-On Kubernetes Tutorial | Learn Kubernetes in 1 Hour - Kubernetes Course for Beginners
https://www.youtube.com/watch?v=X48VuDVv0do
Full Kubernetes Tutorial | Kubernetes Course | Hands-on course with a lot of demos
Docker+
https://www.youtube.com/watch?v=GFgJkfScVNU
Master Docker in one course; learn about images and containers on Docker Hub, running multiple containers with Docker Compose, automating workflows with Docker Compose Watch, and much more. 🐳
https://www.youtube.com/watch?v=kTp5xUtcalw
Learn how to use Docker and Kubernetes in this complete hand-on course for beginners.
相关职位

社招AI部
1、负责强化学习等AI算法在游戏应用场景的商业化落地,包括:游戏环境搭建、模型训练、强化学习框架开发、效果优化等,完成项目交付 2、跟踪了解前沿游戏AI技术研究现状与发展趋势,并推动前沿技术的落地应用
更新于 2025-10-16
校招
1、负责强化学习相关技术在休闲游戏中自动打关及关卡难度调节的落地应用; 2、参与强化学习算法实现及框架搭建,探索强化学习在游戏生命周期各个阶段的应用方向; 3、参与深度学习基础平台的功能选代,持续研发算法与优化性能; 4、跟踪分析工业界及学术界相关方向最新进展。

校招
1、利用监督学习和强化学习等技术,研发以机器学习为基础的棋牌游戏AI。 2、主导算法模型的建立和开发,包括但不限于特征提取、奖励设计、模型训练、神经网络结构优化、参数调优等。 3、基于大量的游戏数据,深入理解和分析玩家数据,制定智能化的数值策略,以提高玩家的活跃度和付费能力。