logo of nio

蔚来校招-高性能AI推理平台研究员/工程师 (High performance AI inference platform researcher/ engineer)

校招全职智能制造地点:圣何塞状态:招聘

任职要求


硕士及以上学历,车辆工程、电力电子、电气工程、自动化、机械电子等相关专业;
熟悉整车开关电源零件拓扑(Buck/Boost/LLC),掌握模拟电路、数字电路原理,具备一定的基本电路动态响应及热仿真分析的能力,熟悉整车低压储能器件技术…
登录查看完整任职要求
微信扫码,1秒登录

工作职责


搜集审核整车各个用电器的负载特性,负载参数, 包括且不限于如静态电流,启动电流,inrush 电流,电容参数等,并支持各个参数需求验证闭环。
参与低压电源架构各个组件设计, 如DCDC变换器, 低压电池,电子保险丝,保险丝盒等,支持定义各个验证roadmap/test case 及问题解决验证闭环。
支持整车低能耗设计及管理, 承接顶层需求, 比如静态里程衰减等, 根据现有电器架构能力,设计低功耗方案, 并将功耗目标分解到各个零件, 支持各个零件的低功耗设计,形成验证闭环的roadmap,并推动相关验证闭环问题解决。
支持整车power 相关系统设计, 如整车上下电逻辑, 整车power 健康度管理及报警,确保整车各个场景的电源可用性及用电安全。
支持Power架构前沿技术研究分析,如安全冗余形态研究,电压等级演进研究(48V),电源器件最新技术的使用研究,以实现整车轻量化,低能耗,低成本,高安全等综合性能述求。
支持Power 相关新技术对标分析。
包括英文材料
学历+
相关职位

logo of xiaohongshu
校招机器学习平台

小红书中台AI平台团队致力于打造业界领先的一站式AI平台,通过技术创新和工程优化,为公司AI业务发展提供强有力的基础设施支撑,实现算法研发效率的显著提升和成本的有效控制。我们负责调度公司所有AI模型训练及推理的数万卡GPU资源,基于自研的训练、推理、智能体框架,为公司所有算法及工程同学提供端到端、一站式的AI研发能力,包含大模型数据处理/训练/压缩/推理/部署及开箱即用的API体验、AI知识库/智能体应用构建、搜广推数据生产/模型训练/模型上线/特征管理/模型测试等。 1、负责大模型/搜广推模型开发平台、AI应用开发平台的架构设计和核心功能研发,构建云原生架构,设计高可用、高性能的微服务体系; 2、负责构建面向大模型、搜广推、智能体全流程DevOps,与下游云原生平台深度融合,支撑大模型在公司内各业务生产链路稳定高效地落地; 3、负责万卡规模GPU集群效能分析及优化,通过调度策略优化、在离线混部、GPU虚拟化、存储&网络加速等手段,提升GPU集群使用效率; 4、将平台和框架结合,通过任务调度、弹性容灾、性能优化等措施端到端提升AI生产效率,涉及k8s/kubeflow、网络通信、分布式训练等; 5、优化各AI平台性能,提升系统稳定性和可扩展性,保障大规模并发场景下的服务质量与用户体验; 6、持续研究分析业内创新AI平台产品,优化技术方案,改进产品功能,提升创新能力与产品体验。

更新于 2025-09-24北京|上海|深圳
logo of xiaohongshu
校招引擎

1. 主导新一代训练与推理引擎的架构设计与核心模块开发,支撑搜广推业务在长序列建模、生成式推荐、Agent 等前沿场景的规模落地。 2. 与存储、数据平台深度协同,打造端到端 ML 数据 Pipeline:统一特征管理、秒级调试、版本追踪与一键上线,让数据科学家专注模型创新。 3. 持续优化训推基础设施:自研 Embedding 高速存储、特征 DSL 引擎、弹性调度与服务化推理框架,实现 10x 级性能提升。 4. 跟踪 LLM / Agent 最新进展,将其工程化落地到搜索、广告、推荐及智能体业务,定义行业新标准。

更新于 2025-09-04北京|上海
logo of xiaohongshu
校招机器学习平台

模型压缩方向: 1、探索研发针对大语言模型、多模态大模型、StableDiffusion模型等模型的压缩技术,包括但不限于量化、蒸馏、剪枝、稀疏化等; 2、参与/负责多个业务场景中的模型压缩技术实现,对模型进行轻量化压缩,提高训练/推理效率,支持业务降本增效。 推理框架方向: 1、参与/负责研发面向CV/NLP/多模态/大语言模型等类型模型的推理服务框架; 2、通过并行计算优化、分布式架构优化、异构调度等多种框架技术,打造高效、易用、领先的AI推理框架。 高性能计算方向: 1、参与/负责AI推理/训练框架的底层性能优化工作,包括但不限于高性能算子、通信库开发与优化等工作; 2、参与/负责大模型计算引擎的研发工作,通过多种方式实现训推性能SOTA; 3、参与/负责前沿AI编译加速等技术的探索和业务落地。 模型训练方向: 1、负责调度公司所有模型训练与推理资源; 2、基于自建的训推引擎,构建公司统一的机器学习平台,为公司所有算法同学(稀疏 & 稠密,含 LLM) 模型迭代提供端到端的一站式服务;包括 数据生产,模型训练,模型上线,特征管理,模型测试,资源管控等一系列能力。

上海|北京
logo of xiaohongshu
校招大模型

小红书中台AI Infra团队深耕大模型「数-训-压-推-评」技术闭环,具备专业的大模型训练加速、模型压缩、推理加速、部署提效等方向硬核技术积淀,基于RedAccel训练引擎、RedSlim压缩工具、RedServing推理部署引擎、DirectLLM大模型MaaS服务,支撑小红书社区、商业、交易、安全、数平、研效等多个核心业务实现AI技术高效落地! 大模型训练方向: 1、参与设计实现支持RLHF/DPO等对齐技术的高效训练框架,优化强化学习阶段的Rollout、Reward Model集成、多阶段训练Pipeline; 2、研发支持多机多卡RL的分布式训练框架,开发TP/PP/ZeRO-3与RL流程的动态协同机制,解决RL算法在超长时序下的显存/通信瓶颈; 3、基于自建的训推引擎,落地公司统一的大模型生产部署平台,为公司所有大模型算法同学提供端到端的一站式服务。 大模型压缩方向: 1、探索研发针对大语言模型、多模态大模型等场景的压缩技术,包括但不限于量化、蒸馏、剪枝、稀疏化等; 2、参与/负责多个业务场景中的模型压缩技术实现,对模型进行轻量化压缩,提高训练/推理效率,支持业务降本增效; 3、参与/负责针对英伟达GPU、华为昇腾NPU等不同的计算硬件,制定不同的模型压缩方案并在业务落地。 大模型推理方向: 1、参与/负责研发面向LLM/MLLM等模型的稳定、易用、性能领先的AI推理框架; 2、通过并行计算优化、分布式架构优化、异构调度等多种框架技术,支撑各业务方向持续降本增效; 3、深度参与周边深度学习系统多个子方向的工作,包括但不限于模型管理、推理部署、日志/监控、工作流编排等。 高性能计算方向: 1、参与/负责AI推理/训练框架的底层性能优化工作,包括但不限于高性能算子、通信库开发与优化等工作; 2、参与/负责大模型计算引擎的研发工作,通过多种方式实现训推性能SOTA; 3、参与/负责前沿AI编译加速等技术的探索和业务落地。 大模型服务方向: 1、参与/负责大模型MaaS系统的架构设计、系统研发、产品研发等工作; 2、深入参与面向大模型场景的请求调度、异构资源调度、引擎优化等核心工作,实现万亿级并行推理系统; 3、为内部产品线提供解决方案,协助公司内用户解决大模型应用过程中业务在MaaS上的使用问题。

更新于 2025-09-24北京|上海