logo of antgroup

蚂蚁金服蚂蚁集团-大模型算法工程师/专家-杭州/北京【平台工程】

社招全职技术类-算法地点:北京 | 杭州状态:招聘

任职要求


1、教育背景优秀,计算机相关专业研究生; 
2、有较好的计算机科学和算法基础,编程能力强; 
3. 有自然语言/多模态大模型、深度序列模型、深度生成模型、图神经网络、知识图谱、数据挖掘、云计算系统、机器学习平台等相关技术或者落地经验者优先; 
4、产出需在论文、开源、比赛成绩、项目上满足1条或者多条;
4a、算法研究背景在诸如ICML/ICLR/NIPS、ACL/EMNLP/KDD、CVPR/ICCV/ECCV等会议有相关论文发表者优先;
4b、应用系统研究背景在诸如WWW、SIGMOD/VLDB、ICSE/ASE、ATC/OSDI/ASPLOS、MLSys等会议有相关论文发表者优先;
4c、在顶会组织或者行业组织且有广泛影响的比赛KDDCup、Kaggle并取得前三好成绩者优先; 
4d、有开源项目影响力或者参与过开源项目者优先;
4e、有作为主力推动或者参与的有较大影响的项目结果产出;
5. 在大厂有相关实习或工作经历者优先; 
6. 较强的表达和沟通能力,工作认真、严谨、敬业。有很强的分析问题和解决问题的能力,有强烈的责任心和自驱力。

工作职责


1、研发面向云计算底座海量数据的大模型,包括但不限于代码大模型、全模态、大规模图学习等领域相关的大模型的应用算法研发;
2、参与大模型应用研发全流程的工作,包括但不限于模型算法设计、代码开发、训练、部署优化、调试、评测;技术创新如专利、论文的撰写;外部技术影响力交流等;
3、推动大模型在DevOps提效、内外部智能体业务应用、爆款AI原生应用、安全和技术风险防控等场景的业务落地;
包括英文材料
算法+
大模型+
数据挖掘+
机器学习+
ICML+
CVPR+
ICCV+
ECCV+
Kaggle+
相关职位

logo of aliyun
社招技术类-算法

岗位职责: 该职位通过大模型训练、Agent、RAG、N2SQL、NLP、语音处理等技术创新和突破,构建Agent通用平台、大模型训练平台等工具产品,同时支持对话机器人等垂直应用及智能产品的建设。欢迎敢于接受挑战的候选人加入我们,一起赋能企业客户。我们的研究方向包括但不限于: 1、通用大模型、推理大模型预训练、微调、强化对齐等技术的持续研究创新; 2、多语言大模型、领域大模型的训练技术研究与落地; 3、AI数据清洗、加工、合成、自动标注技术研究与落地; 4、文本机器人、语音机器人、质检机器人等客服域技术的研发与落地; 5、多Agent、RAG、N2SQL、自主决策等技术的研究与落地; 6、入呼大模型机器人、外呼大模型机器人研发经验;熟悉VAD, ASR, TTS等语音相关技术; 以上方向擅长其中1个即可

更新于 2025-06-10
logo of bytedance
社招A191470

团队介绍:Data-电商-智能对话团队,致力于打造业界领先的大模型对话系统。团队服务的日活用户超过数亿,应用场景覆盖抖音电商全链路,包括平台客服、平台商服、商家客服、达人客服,以及创新的智能导购等核心业务场景,通过持续的技术创新和优化,成功构建了一套完整的智能对话解决方案,为电商业务带来了显著的效率提升和用户体验改善。 课题介绍: 背景:电商智能客服正逐渐成为业务增长和用户体验优化的重要方向,基于大型语言模型(LLM)的智能客服系统解决电商场景中的核心挑战,由LLM完成一次用户进线的完整接待过程,包括诉求澄清、方案协商、方案执行等阶段,实现电商业务的智能化升级——让用户享受更智能高效的客服服务。 研究方向:本课题聚焦于LLM 后训练与智能客服。构建基于 LLM 的多智能体(Multi-Agent)框架,通过规划、回复、工具三类Agent的协作,实现从问题分析、方案执行到结果反馈的全流程智能客服。核心目标是确保客服对话的准确性、合规性与流畅度,避免模型生成幻觉或违背平台政策。同时,围绕电商客服的复杂任务,构建 Benchmark数据集,优化SOP遵循、多轮交互、用户满意度等指标。此外,研究高效数据利用方法,探索低标注数据条件下的LLM训练,并开发自动生成高质量训练数据的系统,以降低人工标注成本,提高智能客服的服务质量与效率。 1、开发AI驱动的智能客服系统:设计并实现AI对话式客服助手,能够处理电商咨询、投诉、退款、争议解决及物流相关问题,以AI替代传统人工客服; 2、大语言模型(LLM)后训练与高效学习:应用最前沿的LLM训练优化技术,如指令微调、强化学习、持续学习等,在最少标注数据的情况下优化AI客服响应质量;具备大语言模型(LLM)微调、知识蒸馏或强化学习的相关经验,应用于对话式AI场景;深入理解检索增强生成(RAG)、专家混合模型(MoE)、稀疏注意力、强化学习、推理时间优化等技术,以提升AI对话质量; 3、基准测试与训练数据构建:识别具有挑战性的客服交互场景,如政策解读、争议处理、客户投诉、导购推荐等,并构建专门的测试集和训练集; 4、多语言与跨文化客服支持:构建能够适应多语言和不同文化背景的AI模型,确保客服交互的精准翻译和针对不同用户群体的合适响应;精通多语言自然语言处理(NLP)、机器翻译及跨语言对话建模; 5、模型优化与高效部署:研究模型压缩、量化、推理优化等技术,确保AI客服助手在大规模应用场景下具备低延迟、高可靠性的表现。

更新于 2025-05-27
logo of bytedance
校招A195565

团队介绍:Data-电商-智能对话团队,致力于打造业界领先的大模型对话系统。团队服务的日活用户超过数亿,应用场景覆盖抖音电商全链路,包括平台客服、平台商服、商家客服、达人客服,以及创新的智能导购等核心业务场景,通过持续的技术创新和优化,成功构建了一套完整的智能对话解决方案,为电商业务带来了显著的效率提升和用户体验改善。 课题介绍: 背景:电商智能客服正逐渐成为业务增长和用户体验优化的重要方向,基于大型语言模型(LLM)的智能客服系统解决电商场景中的核心挑战,由LLM完成一次用户进线的完整接待过程,包括诉求澄清、方案协商、方案执行等阶段,实现电商业务的智能化升级——让用户享受更智能高效的客服服务。 研究方向:本课题聚焦于LLM 后训练与智能客服。构建基于 LLM 的多智能体(Multi-Agent)框架,通过规划、回复、工具三类Agent的协作,实现从问题分析、方案执行到结果反馈的全流程智能客服。核心目标是确保客服对话的准确性、合规性与流畅度,避免模型生成幻觉或违背平台政策。同时,围绕电商客服的复杂任务,构建 Benchmark数据集,优化SOP遵循、多轮交互、用户满意度等指标。此外,研究高效数据利用方法,探索低标注数据条件下的LLM训练,并开发自动生成高质量训练数据的系统,以降低人工标注成本,提高智能客服的服务质量与效率。 1、开发AI驱动的智能客服系统:设计并实现AI对话式客服助手,能够处理电商咨询、投诉、退款、争议解决及物流相关问题,以AI替代传统人工客服; 2、大语言模型(LLM)后训练与高效学习:应用最前沿的LLM训练优化技术,如指令微调、强化学习、持续学习等,在最少标注数据的情况下优化AI客服响应质量;具备大语言模型(LLM)微调、知识蒸馏或强化学习的相关经验,应用于对话式AI场景;深入理解检索增强生成(RAG)、专家混合模型(MoE)、稀疏注意力、强化学习、推理时间优化等技术,以提升AI对话质量; 3、基准测试与训练数据构建:识别具有挑战性的客服交互场景,如政策解读、争议处理、客户投诉、导购推荐等,并构建专门的测试集和训练集; 4、多语言与跨文化客服支持:构建能够适应多语言和不同文化背景的AI模型,确保客服交互的精准翻译和针对不同用户群体的合适响应;精通多语言自然语言处理(NLP)、机器翻译及跨语言对话建模; 5、模型优化与高效部署:研究模型压缩、量化、推理优化等技术,确保AI客服助手在大规模应用场景下具备低延迟、高可靠性的表现。

更新于 2025-05-20
logo of antgroup
社招3年以上技术类-开发

我们是蚂蚁集团网络技术团队,为蚂蚁集团全站提供通智一体、稳定高效的网络基础设施产品、平台和服务。 ● 负责推理网关核心能力设计和开发; ● 通过创新的流量调度算法减少推理成本;

更新于 2025-04-03