蚂蚁金服研究型实习生-多模态推理类语料合成研究
任职要求
研究领域: -目前正在攻读计算机科学或相关STEM领域的学士,硕士或博士学位 -具有一种或多种通用编程语言的经验,包括但不限于: Java,C/C ++ 、Python、JavaScript或Go -具有上述研究领域的相关经验,包括行业经验或作为参与实验室研究 优先录用: -对技术研究充满热情,具有产生新思想和创新的能力; 在自学,问题分析和解决方面表现出色 -在国际会议上或核心期刊发表一份或多份出版物或论文 -至少3个月的全职工作
工作职责
研究领域: 人工智能 项目简介: 随着多模态大模型在复杂推理任务(逻辑推理、数学推导、多模态推理等)中的需求激增,高质量推理类语料的稀缺性成为模型能力提升的核心瓶颈。本项目旨在通过人工合成与优化,构建适配多场景的推理语料库,为大模型训练与评估提供高质量数据支撑。
项目关注多模态大模型的前沿技术问题,特别是领域应用中的泛化能力不足,模型信息融合效率低,推理能力弱等关键问题,探索具备推理能力的、多模态高效融合的领域多模态大模型,沉淀可复制的技术方法,推动其在行业和领域的落地应用。 项目包含但不限于如下关键课题: 1、多模态推理技术研究:探索多模态推理数据构建与强化学习算法,关注多模态领域模型的协同推理机制,提升领域泛化能力; 2、模型原生架构探索:探索多模态数据协同处理的通用模型结构,实现跨模态数据的高效表征学习,探索理解与生成一体化的多模态大模型技术框架,进一步提升模型对领域泛化能力。
我们正在寻找对多模态大模型技术充满热情的研究工程师/科学家,加入我们的团队,共同探索前沿技术并推动其在实际场景中的应用。你将专注于文本、视觉、音频等多模态的联合建模与创新开发,致力于打造下一代人工智能解决方案。 核心职责: 1、多模态联合建模 -研究文本、视觉、音频的联合训练范式,在多模态融合中保持并提升文本推理能力。 -探索多模态框架下的跨模态对齐与交互机制,优化模型的表现与效率。 2、音频生成与理解 -开发高表现力情感对话生成技术,实现自然、流畅的语音合成效果。 -研究音频与音效的统一建模方法,支持多模态音频风格转换等创新任务。 -探索音频与视觉模态的深度理解,包括音频情感、背景环境信息的解析及音视频内容的联合理解。 3、音频表征学习 -研究音频表征的离散化编码方法,设计低帧率、高效率的语音与音频联合建模方案。 -探索更高效的音频特征提取与表示方式,为下游任务提供高质量输入。 4、多模态推理优化 -研究多模态大模型的深度推理能力,优化Chain-of-Thought(CoT)推理的耗时与性能。 -探索复杂推理任务的解决方案,提升模型在多模态场景下的逻辑推理与决策能力。 5、技术创新与落地 -持续跟踪学术前沿动态,结合实际需求提出创新性技术方案。 -推动研究成果的实际应用,参与从算法设计到产品落地的全流程。
研究领域: 机器学习 项目简介: 隐晦类的内容风险防控一直是内容安全识别中的难题,一般通过隐喻、暗讽等手段隐晦的表达某些观点或者对特定的人和事件进行攻击; 在表现形式上除了单独的图文模态,还包括多模混合的情况;从算法角度看,该类风险的防控除了需要模型能够理解内容中的各个要素,进一步的需要模型能够通过各个要素的组合结合外部知识去推理出内容的隐晦表达; 传统识别算法更多的从要素去判断,无法有效防控此类隐晦表达类风险,另外这类风险大多为创意类内容,其表现形式多种多样,样本稀缺,无法通过大规模的数据收集训练有效的识别能力,所以也需要模型具备小样本甚至0样本的识别能力;
我们正在寻找对多模态大模型技术充满热情的研究工程师/科学家,加入我们的团队,共同探索前沿技术并推动其在实际场景中的应用。你将专注于文本、视觉、音频等多模态的联合建模与创新开发,致力于打造下一代人工智能解决方案。 核心职责: 1. 多模态联合建模 -研究构建音视频联合表征的编码方法。 -研究文本、视觉、音频的联合训练范式,在多模态融合中保持并提升文本推理能力。 -探索多模态框架下的跨模态对齐与交互机制,优化模型的表现与效率。 2. 多模态推理优化 -研究多模态大模型的深度推理能力,优化Chain-of-Thought(CoT)推理的耗时与性能。 -探索复杂推理任务的解决方案,提升模型在多模态场景下的逻辑推理与决策能力。 3. 技术创新与落地 -持续跟踪学术前沿动态,结合实际需求提出创新性技术方案。 -推动研究成果的实际应用,参与从算法设计到产品落地的全流程。