蚂蚁金服研究型实习生-数据结构化及知识注入
任职要求
研究领域: -目前正在攻读计算机科学或相关STEM领域的学士,硕士或博士学位 -具有一种或多种通用编程语言的经验,包括但不限于: Java,C/C ++ 、Python、JavaScript或Go -具有上述研究领域的相关经验,包括行业经验或作为参与实验室研究 优先录用: -对技术研究充满热情,具有产生新思想和创新的能力; 在自学,问题分析和解决方面表现出色 -在国际会议上或核心期刊发表一份或多份出版物或论文 -至少3个月的全职工作
工作职责
研究领域: 人工智能 项目简介: 多模态训练数据存在噪声与知识密度低的问题,导致模型存在严重幻觉,以及靠低效的样本堆量来学习知识。在对多模态素材抽取图文实体,构造结构化数据后,进一步关联知识图谱,可以获取关于实体的知识和关系标签,用于探索对多模态任务的知识扩充、数据生成和图片/视频-知识对齐新训练范式的研究。
研究领域: 人工智能 项目简介: 蚂蚁国际当前处于全球化和AI规模化应用的战略关键节点中,为支持多条业务线的业务规模化增长,蚂蚁国际风控致力于AI的创新及其在风控场景的应用。应用场景包括但不限于基于多智能体的风控决策系统, Deepfake识别,风控深度推理大模型等解决实际业务痛点。团队鼓励创新,勇于探索及突破前沿AI能力边界。 1.负责foundation model和生成式AI智能体构建,追踪业界文本生成、思维学习、内容理解等方向的最新技术,极致优化预训练、微调、领域知识注入、RLHF、RM、AI可解释能力。 2.负责AI技术前沿技术跟踪、创新和落地,例如,利用意图理解、图文理解等构建新一代的生成式审核机器人与辅助系统,运用反馈标注、知识体系建设、知识图谱构建等任务;利用多模态技术对图像、文本、结构化数据进行融合学习,致力于挖掘风控场景问题并全面提升风险运营效率,并帮助实现对合规、欺诈、洗钱等风险的高效管控。 3.深入跟踪调研前沿技术方向 ,包括但不限于 NLP/CV/多模态/智能体等,并适时进行技术分享。推动相关领域技术创新,进行专利申请和学术文章发表,产出至少一篇CCF-A以上论文。
随着近些年机器学习与表征学习的发展,非结构化数据的查询和分析变得更加普遍。通过表征学习,我们可以把图片或文本嵌入到高维空间从而用高维向量来代表这些图片或文本。进一步的,通过在高维空间中查找最近邻,我们可以对非结构化数据进行语义搜索。例如,通过检索增强生成技术(RAG),我们可以将外部知识或领域知识进行向量化,利用向量空间中的近邻搜索得到对应的原始知识,对大语言模型的生成结果进行增强,来减少大模型出现幻觉或知识过时的现象。 为了提升数据库产品对AI应用的支持,阿里云瑶池数据库也全面提升了向量检索能力,在PolarDB、RDS、AnalyticDB、Lindorm、Tair等产品中集成了向量功能,实现结构化数据、半结构化数据、多模数据、向量数据的一体化处理。 然而,目前向量索引主要关注查询速度和准确率,对于实际复杂场景下的搜索问题还没有足够的研究。例如,分布式架构下的向量查询索引、结构化与非结构化数据的联合查询,以及数据动态增删场景下的索引优化等问题,都需要进一步探索和研究。
团队介绍 POI智能化使命是通过高质量高效率低成本的智能化手段及先进生产力,数字化还原真实世界POI,保障POI数据的时效性、正确性和完备性,作为高德用户信息获取、交易履约和出行体验的基础。每个POI背后都有精彩的故事,我们作为链接POI和用户的第一步,每一分努力都是与现实世界的一次互动。 职位描述 我们需要NLP和多模态大模型方向的算法工程师,负责对地图生产资料、互联网情报、搜索日志、用户反馈等非结构化文本进行分析和信息抽取,负责理解高德用户的到达行为,融合人地大数据,构建知识图谱和智能推理能力,打通数据生产和前台业务,使得用户获得更加智能的出行和服务体验。 1、参与和负责POI产线的NLP算法部分,包括POI的NLP基础功能服务、多模态名称融合生成、名称质检模块、名称纠错模块等; 2、搭建POI的NLP基础服务平台,实现以POI为核心实体的地图数据图谱,为高德的POI搜索、推荐业务提供完备信息; 3、配合其他POI采集、挖掘、调度、聚合业务,建模NLP任务,提供准确且有效的NLP信息; 4、积极地探索和研究NLP的应用和认知领域,结合地图场景,提供更加全面且完备的服务;