蚂蚁金服【医疗热招】蚂蚁集团-医疗多模态算法-数字医疗
社招全职5年以上技术类-算法地点:北京 | 上海 | 杭州状态:招聘
任职要求
1.具备扎实的机器学习基础和工程化能力,包括机器学习、深度学习、强化学习。实操具备多模态大模型预训练、SFT、GRPO等后训练技术有项目应用经验优先。 2.熟练掌握Python,JAVA等至少一门语言,掌握Tensorflow、Pytorch等至少一个深度学习框架,熟悉并具备QwenVL、Internvl等主流多模态大模型实战经验的优先。 3.有大模型开源项目、医疗应用场景、多模态或者文本大模型预训练/语音/后训练o1等实操经验者优先。 4.有人工智能顶会论文发表者优先。
工作职责
1. 负责医疗多模态大模型的研发和应用,深入挖掘垂直医疗行业、开源以及蚂蚁的海量数据,研究前沿大模型训练和优化方法,结合医疗行业特性构建图文/语音/视频交互的医疗多模态大模型。 2. 开发医疗领域领先的技术产品,如报告解读、皮肤、影像识别等产品,提升医疗行业场景的用户体验和效率,打造支付宝医疗健康新时代下的AI应用。 3. 研究和跟踪前沿技术发展,探索AI助力医疗普惠和智能化的新范式。
包括英文材料
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
强化学习+
https://cloud.google.com/discover/what-is-reinforcement-learning?hl=en
Reinforcement learning (RL) is a type of machine learning where an "agent" learns optimal behavior through interaction with its environment.
https://huggingface.co/learn/deep-rl-course/unit0/introduction
This course will teach you about Deep Reinforcement Learning from beginner to expert. It’s completely free and open-source!
https://www.kaggle.com/learn/intro-to-game-ai-and-reinforcement-learning
Build your own video game bots, using classic and cutting-edge algorithms.
大模型+
https://www.youtube.com/watch?v=xZDB1naRUlk
You will build projects with LLMs that will enable you to create dynamic interfaces, interact with vast amounts of text data, and even empower LLMs with the capability to browse the internet for research papers.
https://www.youtube.com/watch?v=zjkBMFhNj_g
SFT+
https://cameronrwolfe.substack.com/p/understanding-and-using-supervised
Understanding how SFT works from the idea to a working implementation...
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
Java+
https://www.youtube.com/watch?v=eIrMbAQSU34
Master Java – a must-have language for software development, Android apps, and more! ☕️ This beginner-friendly course takes you from basics to real coding skills.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
相关职位
社招5年以上技术类-算法
1)基于多模态数据信息的重大慢病(比如心脑血管疾病,代谢性疾病)风险预测,评估,精确诊断 以及诊断推荐和预后优化评估; 2)针对癌症病人潜在群体的多模态信息polygenic score估计和风险预测,重大癌症病种确诊分类,基于多模态时间序列信息的治疗方案推荐,癌症病人全流程管理; 3)打造蚂蚁健康在医疗学术影响力;(如参加国际医疗学术会议和分享、发表论文等); 4)内部分享:及时的全球最前沿的医疗AI动态跟国内团队分享交流,提升团队的全球视野。
更新于 2025-09-02
社招2年以上技术类-算法
1. 负责医疗语音大模型的研发和应用,包括语音前端DSP,3A,VAD,ASR,TTS等算法及原生多模态等新技术方案,推进语音新技术的突破; 2. 开发医疗领域领先的技术产品,如泛医疗助手、医护办事等产品,提升医疗行业场景的用户体验和效率,打造支付宝医疗健康新时代下的AI应用; 3. 研究和跟踪前沿技术发展,探索AI助力医疗普惠和智能化的新范式。
更新于 2025-09-18
社招3年以上技术类-算法
1、负责支付宝的个性化AI产品体验以及基于最新的大模型等AI技术构造下一代的智能化产品的质量保障工作,确保在医疗场景中的应用效果和安全; 2、工作内容包括不限于 持续集成体系、质量平台开发、专业领域模型训练、算法评测、线上问题归因分析等,推动架构、技术、工具和流程的改进和创新,多工种配合,提升整体研发和交付的效率; 3、在算法工程架构、质量平台、团队技能和人员等方面进行有前瞻性的布局、规划和建设,构建高品质的稳定性保障能力,有质量技术方向的创新。
更新于 2025-09-22