蚂蚁金服蚂蚁集团-推理引擎优化专家-北京/上海
任职要求
1. 负责大模型推理性能的分析与优化,针对蚂蚁核心业务场景,实施推理引擎的性能优化,提升推理效率。 2. 熟悉主流推理框架(如trt、sgLang等)的使用,具备一定的框架优化能力,能够针对业务需求进行定制化优化 3. 参与推理引擎核心模块的开发,能够快速学习新特性并推动技术落地。 4. 参与PD分离架构的设计与优化,实现两者的解耦与协同执行,提升系统整体性能和推理效率。 5. 在KV cache、量化、投机采样等领域有实际优化经验者优先,可以针对业务场景提出并实施性能优化方案。 6. 熟练掌握Python、C++等编程语言,对系统软件有浓厚兴趣,具备较强的学习能力和团队合作精神,能够独立完成技术难题攻关。
工作职责
1、研发面向云计算底座海量数据的大模型,包括但不限于代码大模型、全模态、大规模图学习等领域相关的大模型的应用算法研发; 2、参与大模型应用研发全流程的工作,包括但不限于模型算法设计、代码开发、训练、部署优化、调试、评测;技术创新如专利、论文的撰写;外部技术影响力交流等; 3、推动大模型在DevOps提效、内外部智能体业务应用、爆款AI原生应用、安全和技术风险防控等场景的业务落地;
1.负责主流大模型(DeepSeek、通义、LLaMA等)的全栈性能优化,涵盖模型架构优化、训练/推理框架调优及底层算子优化,提升模型在单机/集群场景下不同GPU/NPU硬件平台的运行效率 2.开发创新推理加速方案,通过投机采样算法改进、MTP机制优化等框架级特性,提升MOE架构模型推理效率;并通过优化集群并行推理场景的专家负载均衡、计算/通信 Overlap 等特性,提升集群级别的推理效率 3.完成 W8A8 等量化算法研发,并在框架层面支持量化模式下的 TP、EP 等并行模式的性能优化 4.针对多种计算架构(NVIDIA/AMD GPU、国产化 NPU 等)进行深度硬件适配,开发高性能算子库与内存管理组件,实现跨平台性能优化与资源利用率的提升
1、负责安全GPU推理引擎、GPU性能优化相关技术平台,解决安全大模型GPU部署的资源弹性、性能瓶颈问题 2、了解行业最新GPU、NPU等最技术优化方案以及在安全落地 3、带领团队完成Modelops平台相关项目管理,以及平台架构规划设计
● 设计和实现高效的分布式推理架构,提升多节点、多GPU环境下的推理速度和资源利用率。开发智能的请求调度算法,确保高并发场景下的最优响应时间和吞吐量。对推理引擎的运行时环境进行深度优化,减少延迟,提高整体性能。针对多种异构AI加速硬件(如NVIDIA GPU, AMD GPU, NPU等),对核心算子进行极致性能优化,最大化算力和访存带宽利用率。 ● 探索并实现极低bit量化技术和稀疏化,减少模型存储和计算资源消耗,同时保持推理精度。探索更高效的解码算法,提升生成任务的推理速度。 ● 设计并实现能够处理大规模并发请求的系统架构,确保极端负载下的稳定性和性能。引入容错机制、自动恢复和监控报警系统,保证系统的高可用性和稳定性。构建灵活的系统架构,支持动态扩展,以应对未来业务增长和技术演进的需求。 ● 持续关注并跟进业界技术发展,尤其是超长上下文、COT思维链、多模态融合等方向。积极尝试和探索新的推理优化方向,提出并验证创新性的解决方案。
我们是小红书中台大模型 Infra 团队,专注打造领先易用的「AI 大模型全链路基础设施」!团队深耕大模型「数-训-压-推-评」技术闭环,在大模型训练加速、模型压缩、推理优化、部署提效等方向积累了深厚的技术优势,基于 RedAccel 训练引擎、RedSlim 压缩工具、RedServing 推理部署引擎、DirectLLM 大模型 API 服务、QuickSilver 大模型生产部署平台等核心产品,持续赋能社区、商业、交易、安全、数平、研效等多个核心业务,实现 AI 技术高效落地! DirectLLM是小红书内部面向各业务场景建设的大模型API服务产品,通过标准化API接口提供LLM/MLLM等大模型推理服务,致力于为AI应用开发者提供品类丰富、数量众多的模型选择,并通过API接口为其提供开箱即用、能力卓越、成本经济的模型服务,各领域模型的能力均可通过统一的API和SDK来实现被不同业务系统集成。 工作职责: 1、参与/负责大模型推理服务平台(MaaS)的架构设计、系统研发、产品研发等工作; 2、深入参与面向大模型场景的请求调度、异构资源调度、引擎优化等核心工作,实现千亿级Token并行推理平台; 3、为内部产品线提供解决方案,协助公司内用户解决大模型应用过程中业务在平台上的使用问题。