logo of meituan

美团自然语言处理实习生(智能交互方向)

实习兼职核心本地商业-基础研发平台地点:北京状态:招聘

任职要求


1、扎实的算法基础,熟悉NLP相关算法和模型;
2、有Tensorflow, pytorch等深度学习框架与自然语言处理结合实际项目经验者优先
3、有语义理解、对话系统、问答系统、机器…
登录查看完整任职要求
微信扫码,1秒登录

工作职责


1、负责美团智能客服技术(智能对话、知识挖掘、摘要生成等)相关工作;
2、通过模型优化,提升线上算法的效果;
3、跟进业界技术动态,完成算法的调研、选型与调优;
包括英文材料
算法+
NLP+
TensorFlow+
PyTorch+
还有更多 •••
相关职位

logo of tongyi
实习通义研究型实习生

随着人工智能技术的飞速发展,智能视频编辑逐渐成为多媒体处理领域的重要研究方向。传统的视频编辑工具依赖于手动操作,耗时且复杂,而基于深度学习和大模型的智能视频编辑技术则能够自动完成许多任务,如角色生成、场景生成、运动生成、风格转换等。然而,当前的智能视频编辑系统在实际应用中往往面临一个关键挑战:“可控性不足”。 因此,本课题旨在探索如何提高智能视频编辑系统的可控性,使用户能够在保持高效自动化的同时,对视频编辑过程和结果进行更加精细的控制。通过研究和开发新的算法和技术,我们希望能够为未来的智能视频编辑系统提供更强的交互性和灵活性,从而更好地服务于内容创作者和普通用户。

更新于 2024-12-12北京|杭州
logo of bytedance
实习A139850

团队介绍:Stone-AI PaaS团队专注研究AI/大模型应用相关领域的技术和产品,致力于创造和实现创新的人工智能平台服务。团队目前已服务于字节跳动多款产品,比如豆包、Cici、Coze、Trae等。同时团队内部也在孵化多款AI应用创新产品,积极探索大模型应用的技术发展。团队氛围好,发展空间大,欢迎加入! 课题介绍: 背景:随着人工智能技术的飞速发展,大语言模型(LLM)在自然语言处理领域取得了显著进展,为智能对话系统的发展提供了有力支撑。然而,现有的智能对话系统在面对复杂多变的实际应用场景时,仍存在诸多不足。一方面,用户对于交互的多样性和便捷性提出了更高要求,期望能够实现语音、图像、文本等多模态信息的自然交互;另一方面,面对复杂问题,当前对话系统缺乏深度思考和推理能力,难以提供全面且精准的解答。同时,在知识获取方面,如何高效地调度各类工具,挖掘优质内容,以满足用户的多样化需求,也成为亟待解决的问题。因此,开展对多模态交互、深度思考、工具调度以及优质内容挖掘方向的研究,对于提升通用对话助手的性能和用户体验具有重要的现实意义。 研究方向: 1、多模态交互方向:深入研究语音、图像、文本等多模态信息的融合与交互技术,开发能够实现多模态信息无缝对接的算法模型。通过构建多模态语义理解框架,使对话助手能够准确理解不同模态输入的含义,并根据用户需求以语音、图像、文本等多种形式进行输出,实现自然流畅的多模态交互体验。例如,当用户输入一张图片并提出相关问题时,对话助手能够识别图片内容,并结合文本信息进行分析解答,同时可以以语音形式反馈结果; 2、深度思考方向:探索基于深度学习的推理机制,提升对话助手的逻辑推理和问题解决能力。引入知识图谱、语义网络等技术,增强对话助手对知识的理解和运用能力,使其能够在面对复杂问题时,进行深度思考和分析,挖掘问题的本质,提供更具逻辑性和准确性的回答。比如,在解答科学类复杂问题时,对话助手能够基于知识图谱进行推理,给出全面且深入的解释; 3、工具调度方向:构建智能工具调度系统,使对话助手能够根据用户问题的类型和需求,自动识别并调用合适的外部工具,如信息检索工具、数据分析工具、翻译工具等。建立工具之间的协同工作机制,确保在处理复杂任务时,多个工具能够相互配合,实现信息共享和流程优化,提高问题解决的效率和质量。例如,在处理跨国业务相关问题时,对话助手可以同时调用翻译工具和信息检索工具,快速获取并翻译相关资料,为用户提供准确信息; 4、优质内容挖掘方向:研发高效的内容挖掘算法,从海量的文本、图像、视频等数据中筛选出优质、有价值的信息。利用自然语言处理和计算机视觉技术,对内容进行分类、标注和评估,建立优质内容数据库。通过与对话助手的交互,根据用户的兴趣和需求,精准推送相关的优质内容,满足用户对高质量信息的获取需求。比如,为对历史文化感兴趣的用户推荐相关的优质纪录片、学术论文等。

更新于 2025-03-03北京
logo of bytedance
实习A204351A

团队介绍:Stone-AI PaaS团队专注研究AI/大模型应用相关领域的技术和产品,致力于创造和实现创新的人工智能平台服务。团队目前已服务于字节跳动多款产品,比如豆包、Cici、Coze、Trae等。同时团队内部也在孵化多款AI应用创新产品,积极探索大模型应用的技术发展。团队氛围好,发展空间大,欢迎加入! 课题介绍: 背景:随着人工智能技术的飞速发展,大语言模型(LLM)在自然语言处理领域取得了显著进展,为智能对话系统的发展提供了有力支撑。然而,现有的智能对话系统在面对复杂多变的实际应用场景时,仍存在诸多不足。一方面,用户对于交互的多样性和便捷性提出了更高要求,期望能够实现语音、图像、文本等多模态信息的自然交互;另一方面,面对复杂问题,当前对话系统缺乏深度思考和推理能力,难以提供全面且精准的解答。同时,在知识获取方面,如何高效地调度各类工具,挖掘优质内容,以满足用户的多样化需求,也成为亟待解决的问题。因此,开展对多模态交互、深度思考、工具调度以及优质内容挖掘方向的研究,对于提升通用对话助手的性能和用户体验具有重要的现实意义。 研究方向: 1、多模态交互方向:深入研究语音、图像、文本等多模态信息的融合与交互技术,开发能够实现多模态信息无缝对接的算法模型。通过构建多模态语义理解框架,使对话助手能够准确理解不同模态输入的含义,并根据用户需求以语音、图像、文本等多种形式进行输出,实现自然流畅的多模态交互体验。例如,当用户输入一张图片并提出相关问题时,对话助手能够识别图片内容,并结合文本信息进行分析解答,同时可以以语音形式反馈结果; 2、深度思考方向:探索基于深度学习的推理机制,提升对话助手的逻辑推理和问题解决能力。引入知识图谱、语义网络等技术,增强对话助手对知识的理解和运用能力,使其能够在面对复杂问题时,进行深度思考和分析,挖掘问题的本质,提供更具逻辑性和准确性的回答。比如,在解答科学类复杂问题时,对话助手能够基于知识图谱进行推理,给出全面且深入的解释; 3、工具调度方向:构建智能工具调度系统,使对话助手能够根据用户问题的类型和需求,自动识别并调用合适的外部工具,如信息检索工具、数据分析工具、翻译工具等。建立工具之间的协同工作机制,确保在处理复杂任务时,多个工具能够相互配合,实现信息共享和流程优化,提高问题解决的效率和质量。例如,在处理跨国业务相关问题时,对话助手可以同时调用翻译工具和信息检索工具,快速获取并翻译相关资料,为用户提供准确信息; 4、优质内容挖掘方向:研发高效的内容挖掘算法,从海量的文本、图像、视频等数据中筛选出优质、有价值的信息。利用自然语言处理和计算机视觉技术,对内容进行分类、标注和评估,建立优质内容数据库。通过与对话助手的交互,根据用户的兴趣和需求,精准推送相关的优质内容,满足用户对高质量信息的获取需求。比如,为对历史文化感兴趣的用户推荐相关的优质纪录片、学术论文等。

更新于 2025-03-03上海
logo of meituan
实习核心本地商业-基

1. 基座增强:探索大模型垂直领域知识高效增强方法,包括数据策略、训练策略以及scaling law友好的训练方法,打造适配实际应用所需的基座能力; 2. 多模态端到端:实现语音与文本模态的深度融合与统一建模,打造高效、轻量的端到端多模态系统,从而有助于更全面、多维度地理解语音与文本,提供更强的智能以及更智能的交互模式; 3. 深度推理:突破大模型在复杂逻辑推理、因果推断、多步决策、沟通技巧等大模型基础通用能力,提升模型解决开放式问题的能力; 4. 结合大模型,研发对话交互场景的大模型Agent,支持智能客服、销售、数据分析、C端助理等项目,通过预训练、微调、强化学习等全链路的技术实践,实现类人的理解和执行能力,提升美团服务能力和效率; 5. 不断探索技术新领域,推动技术能力的沉淀和技术氛围的建设。

更新于 2025-07-17北京