logo of mi

小米门店运营--小米汽车

社招全职5年以上A231159地点:广州状态:招聘

任职要求


任职要求:
1、本科及以上学历;
2、5年以上工作经验,2年以上零售运营管理经验或者店面运营管理经历,精通办公软件;
3、良好的工作责任心与主动性,较强的人际沟通技巧;
4、较强的团队管理能力及谈判能力,适应出差。

工作职责


岗位职责:
1、【新建门店管理】支持新店开业前的准备工作,拉通总部门店运营资源,跟进人员到岗进度、展试驾车到店进度以及陈设布置进度,协助省分副总确保零售门店如期投入运营
2、【门店运营质量管理】负责统筹区域内各项门店运营标准落地,包括但不限于人、车、场各项标准制度的落地,协助省分副总做好区域自检自查
3、【区域预算管理】负责统筹区域内预算制定,确保门店各项费用开支合规;保全门店及车辆资产
4、【区域体验管理】分析用户体验反馈,协助省分副总制定关键动作,减少投诉,提高转化机会。包括但不限于发现销售流程中的问题,支持满意度,NPS,明暗检成绩不达标的门店提升
完成省分副总及总部门店运营交办的其他门店运营类工作
包括英文材料
学历+
相关职位

logo of xiaohongshu
社招5-10年引擎

我们是小红书中台大模型 Infra 团队,专注打造领先易用的「AI 大模型全链路基础设施」!团队深耕大模型「数-训-压-推-评」技术闭环,在大模型训练加速、模型压缩、推理优化、部署提效等方向积累了深厚的技术优势,基于 RedAccel 训练引擎、RedSlim 压缩工具、RedServing 推理部署引擎、DirectLLM 大模型 API 服务、QuickSilver 大模型生产部署平台等核心产品,持续赋能社区、商业、交易、安全、数平、研效等多个核心业务,实现 AI 技术高效落地! 1、参与设计实现支持RLHF/DPO等对齐技术的高效训练框架,优化强化学习阶段的Rollout、Reward Model集成、多阶段训练 Pipline; 2、研发支持多机多卡 RL 的分布式训练框架,开发TP/PP/ZeRO-3与RL流程的动态协同机制,解决 RL 算法在超长时序下的显存/通信瓶刭 3、构建端到端后训练工具链,主导框架与 MLOps 平台集成,提供训练可视化、自动超参搜索等生产级能力 4、与公司各算法部门深度合作,参与大语言模型LLM、多模态大模型 MLLM等业务在 SFT/RL领域的算法探索和引擎迭代; 5、参与分析各业务 GPU 利用率与饱和度等指标,结合业务场景持续优化训练框架能力,提升框架领先性。

更新于 2025-08-25
logo of xiaohongshu
社招3年以上机器学习平台

【业务介绍】 作为公司统一的机器学习平台团队,负责调度公司所有模型训练与推理资源;基于自建的训推引擎,构建公司统一的机器学习平台,为公司所有算法同学(稀疏 & 稠密,含 LLM) 模型迭代提供端到端的一站式服务;包括 数据生产,模型训练,模型上线,特征管理,模型测试,资源管控等一系列能力。 【岗位职责】 1、负责机器学习链路,离在线数据相关的开发工作,包括样本数据、特征数据等的数据链路搭建、任务运维和调优、性能优化等 2、负责小红书大规模机器学习平台的后台系统设计和开发工作;包括样本平台,特征平台,训练平台,推理平台等AI应用后台建设等; 3、研究分析业内AI平台产品,优化技术方案,改进产品功能,完善产品体验。

logo of xiaohongshu
社招5-10年引擎

我们是小红书中台大模型 Infra 团队,专注打造领先易用的「AI 大模型全链路基础设施」!团队深耕大模型「数-训-压-推-评」技术闭环,在大模型训练加速、模型压缩、推理优化、部署提效等方向积累了深厚的技术优势,基于 RedAccel 训练引擎、RedSlim 压缩工具、RedServing 推理部署引擎、DirectLLM 大模型 API 服务、QuickSilver 大模型生产部署平台等核心产品,持续赋能社区、商业、交易、安全、数平、研效等多个核心业务,实现 AI 技术高效落地! 1、参与/负责研发面向大语言模型(LLM)/多模态大模型(MLLM)等类型模型的推理服务框架; 2、通过并行计算优化、分布式架构优化、异构调度等多种框架技术,打造高效、易用、领先的AI推理框架; 2、深度参与周边深度学习系统多个子方向的工作,包括但不限于模型管理、推理部署、日志/监控、工作流编排等; 3、与全公司各业务算法部门深度合作,为重点项目进行算法与系统的联合优化,支撑业务目标达成。

更新于 2025-10-18
logo of xiaohongshu
社招引擎

大模型具备很强的泛化及理解世界能力,在小红书内的众多生产场景遍地开花,大模型的训练和部署已成为许多算法工程师的日常。在多团队、多业务频繁使用的大规模GPU集群上,如何能够通过高效的GPU调度策略,使大家不仅能丝滑地完成训练及部署任务,同时也能充分激发大规模GPU集群的效能,是行业公认的关键挑战。在这里,你可以聚焦LLM场景,接触到超大规模GPU集群,并使用真实负载数据进行深入分析及技术探索。欢迎加入我们,一起探索领先技术改变世界! 工作职责: 1、负责万卡规模GPU集群效能分析及优化,通过调度策略优化、在离线混部、集群调度、GPU虚拟化、故障快速恢复、存储&网络加速等手段,提升大规模GPU集群的整体使用效率。 2、负责构建面向大模型训练、微调、推理、部署全流程LLMOps,与下游云原生平台深度融合,支撑大模型在公司内各业务生产链路稳定高效地落地。 3、持续关注业界最新的GPU资源调度相关技术动态,探索建设业界领先的资源调度策略及方法,构建下一代大规模AI资源调度系统。