logo of tongyi

通义通义实验室-Data Agent技术专家-智能系统团队

社招全职1年以上技术类-算法地点:杭州状态:招聘

任职要求


1. 计算机领域专业博士及以上学位,研究方向在数据库、数据科学、大模型等。
2. 有相关领域的顶级论文发表或…
登录查看完整任职要求
微信扫码,1秒登录

工作职责


1. 负责百炼平台Data Agent智能体相关功能的梳理、定位、设计、开发和产品化工作。
2. 负责追踪Data Agent前沿方向,聚焦核心技术的研究和突破。
3. 负责Data Agent相关的基础设施能力设计和工程开发工作。
包括英文材料
学历+
数据科学+
还有更多 •••
相关职位

logo of aliyun
社招3年以上云智能集团

1. MLOps平台开发打造一站式大模型开发平台,负责主流开源和闭源模型的训练、评测、蒸馏、压缩、部署全链路工具开发 ● 参与模型各种后训练如微调、蒸馏、强化学习的产品化,以及vLLM/sglang/自研推理引擎的优化,提供有竞争力的推理性能 ● 负责各种MLOps工具链开发,如AI资产管理、实验管理、血缘跟踪、评测对比等,帮助用户串联AI开发全流程,提升模型开发效率 ● 负责多模态数据自动标注和挖掘功能的开发,为智驾和具身智能客户提供新一代的数据工程解决方案 2. 企业级Agent开发平台建设 ● 建设具备全模态能力的agent开发平台,帮助客户构建RAG、chatbot、data agent、design agent、research agent等各种AI agent应用 ● 提供白盒化开发模式,建设全链路的可观测、可调试和监控能力,帮助用户构建同时具备高精度和高性价比的agent应用 ● 针对企业客户对安全隐私的强需求,构建全方位的安全防护能力,包括不限于模型安全护栏、工具沙箱、细粒度权限管控等 ● 与阿里云大数据、智能搜索等业务产品合作,建设阿里云agent工具生态

更新于 2025-09-10北京|杭州
logo of bytedance
社招A191470

团队介绍:Data-电商-智能对话团队,致力于打造业界领先的大模型对话系统。团队服务的日活用户超过数亿,应用场景覆盖抖音电商全链路,包括平台客服、平台商服、商家客服、达人客服,以及创新的智能导购等核心业务场景,通过持续的技术创新和优化,成功构建了一套完整的智能对话解决方案,为电商业务带来了显著的效率提升和用户体验改善。 课题介绍: 背景:电商智能客服正逐渐成为业务增长和用户体验优化的重要方向,基于大型语言模型(LLM)的智能客服系统解决电商场景中的核心挑战,由LLM完成一次用户进线的完整接待过程,包括诉求澄清、方案协商、方案执行等阶段,实现电商业务的智能化升级——让用户享受更智能高效的客服服务。 研究方向:本课题聚焦于LLM 后训练与智能客服。构建基于 LLM 的多智能体(Multi-Agent)框架,通过规划、回复、工具三类Agent的协作,实现从问题分析、方案执行到结果反馈的全流程智能客服。核心目标是确保客服对话的准确性、合规性与流畅度,避免模型生成幻觉或违背平台政策。同时,围绕电商客服的复杂任务,构建 Benchmark数据集,优化SOP遵循、多轮交互、用户满意度等指标。此外,研究高效数据利用方法,探索低标注数据条件下的LLM训练,并开发自动生成高质量训练数据的系统,以降低人工标注成本,提高智能客服的服务质量与效率。 1、开发AI驱动的智能客服系统:设计并实现AI对话式客服助手,能够处理电商咨询、投诉、退款、争议解决及物流相关问题,以AI替代传统人工客服; 2、大语言模型(LLM)后训练与高效学习:应用最前沿的LLM训练优化技术,如指令微调、强化学习、持续学习等,在最少标注数据的情况下优化AI客服响应质量;具备大语言模型(LLM)微调、知识蒸馏或强化学习的相关经验,应用于对话式AI场景;深入理解检索增强生成(RAG)、专家混合模型(MoE)、稀疏注意力、强化学习、推理时间优化等技术,以提升AI对话质量; 3、基准测试与训练数据构建:识别具有挑战性的客服交互场景,如政策解读、争议处理、客户投诉、导购推荐等,并构建专门的测试集和训练集; 4、多语言与跨文化客服支持:构建能够适应多语言和不同文化背景的AI模型,确保客服交互的精准翻译和针对不同用户群体的合适响应;精通多语言自然语言处理(NLP)、机器翻译及跨语言对话建模; 5、模型优化与高效部署:研究模型压缩、量化、推理优化等技术,确保AI客服助手在大规模应用场景下具备低延迟、高可靠性的表现。

更新于 2025-05-27上海
logo of bytedance
校招A195565

团队介绍:Data-电商-智能对话团队,致力于打造业界领先的大模型对话系统。团队服务的日活用户超过数亿,应用场景覆盖抖音电商全链路,包括平台客服、平台商服、商家客服、达人客服,以及创新的智能导购等核心业务场景,通过持续的技术创新和优化,成功构建了一套完整的智能对话解决方案,为电商业务带来了显著的效率提升和用户体验改善。 课题介绍: 背景:电商智能客服正逐渐成为业务增长和用户体验优化的重要方向,基于大型语言模型(LLM)的智能客服系统解决电商场景中的核心挑战,由LLM完成一次用户进线的完整接待过程,包括诉求澄清、方案协商、方案执行等阶段,实现电商业务的智能化升级——让用户享受更智能高效的客服服务。 研究方向:本课题聚焦于LLM 后训练与智能客服。构建基于 LLM 的多智能体(Multi-Agent)框架,通过规划、回复、工具三类Agent的协作,实现从问题分析、方案执行到结果反馈的全流程智能客服。核心目标是确保客服对话的准确性、合规性与流畅度,避免模型生成幻觉或违背平台政策。同时,围绕电商客服的复杂任务,构建 Benchmark数据集,优化SOP遵循、多轮交互、用户满意度等指标。此外,研究高效数据利用方法,探索低标注数据条件下的LLM训练,并开发自动生成高质量训练数据的系统,以降低人工标注成本,提高智能客服的服务质量与效率。 1、开发AI驱动的智能客服系统:设计并实现AI对话式客服助手,能够处理电商咨询、投诉、退款、争议解决及物流相关问题,以AI替代传统人工客服; 2、大语言模型(LLM)后训练与高效学习:应用最前沿的LLM训练优化技术,如指令微调、强化学习、持续学习等,在最少标注数据的情况下优化AI客服响应质量;具备大语言模型(LLM)微调、知识蒸馏或强化学习的相关经验,应用于对话式AI场景;深入理解检索增强生成(RAG)、专家混合模型(MoE)、稀疏注意力、强化学习、推理时间优化等技术,以提升AI对话质量; 3、基准测试与训练数据构建:识别具有挑战性的客服交互场景,如政策解读、争议处理、客户投诉、导购推荐等,并构建专门的测试集和训练集; 4、多语言与跨文化客服支持:构建能够适应多语言和不同文化背景的AI模型,确保客服交互的精准翻译和针对不同用户群体的合适响应;精通多语言自然语言处理(NLP)、机器翻译及跨语言对话建模; 5、模型优化与高效部署:研究模型压缩、量化、推理优化等技术,确保AI客服助手在大规模应用场景下具备低延迟、高可靠性的表现。

更新于 2025-05-20上海
logo of bytedance
实习A222718

团队介绍:Data-电商-智能对话团队,致力于打造业界领先的大模型对话系统。团队服务的日活用户超过数亿,应用场景覆盖抖音电商全链路,包括平台客服、平台商服、商家客服、达人客服,以及创新的智能导购等核心业务场景,通过持续的技术创新和优化,成功构建了一套完整的智能对话解决方案,为电商业务带来了显著的效率提升和用户体验改善。 课题介绍: 背景:电商智能客服正逐渐成为业务增长和用户体验优化的重要方向,基于大型语言模型(LLM)的智能客服系统解决电商场景中的核心挑战,由LLM完成一次用户进线的完整接待过程,包括诉求澄清、方案协商、方案执行等阶段,实现电商业务的智能化升级——让用户享受更智能高效的客服服务。 研究方向:本课题聚焦于LLM 后训练与智能客服。构建基于 LLM 的多智能体(Multi-Agent)框架,通过规划、回复、工具三类Agent的协作,实现从问题分析、方案执行到结果反馈的全流程智能客服。核心目标是确保客服对话的准确性、合规性与流畅度,避免模型生成幻觉或违背平台政策。同时,围绕电商客服的复杂任务,构建 Benchmark数据集,优化SOP遵循、多轮交互、用户满意度等指标。此外,研究高效数据利用方法,探索低标注数据条件下的LLM训练,并开发自动生成高质量训练数据的系统,以降低人工标注成本,提高智能客服的服务质量与效率。 1、数据挖掘:负责数据集的构建与维护,利用数据飞轮机制不断优化数据质量和丰富度,进行深度的数据挖掘,沉淀高价值信息; 2、大模型训练:针对业务需求进行大模型的继续训练(CT)、有监督微调(SFT)、偏好学习,以及多模态模型训练,提升模型在特定场景下的表现; 3、提示词工程:与业务专家合作,构建和优化结构化的提示词,充分挖掘和利用大模型的能力,高效、精准解决实际问题; 4、信息检索:开发和优化Query理解、召回、相关性排序等技术,提升信息检索的效率和准确性,提升RAG的效果; 5、智能体技术:利用领先的智能体框架,增强大模型的推理、对话和反思能力,解决复杂业务问题,提升用户体验; 6、大模型评测:制定和实施大模型的评估方案,结合人工评估和自动化评估手段,确保模型性能的可靠性和稳定性; 7、应用落地:定义业务问题,设定任务标准和目标,不断优化模型和系统,以达到最佳的业务效果和用户满意度。

更新于 2025-03-04上海