logo of tongyi

通义通义实验室-AI对话系统算法专家-北京/杭州

社招全职3年以上技术类-算法地点:北京 | 杭州状态:招聘

任职要求


1.  计算机科学、人工智能、机器学习或相关专业硕士及以上学历,3年以上NLP/对话系统/推荐系统相关算法研发经验。
2.  精通大语言模型(LLM)在对话系统中的应用,熟悉Prompt Engineering、微调(SFT/LoRA)、RAG、Agent框架等技术。 
3.  在以下至少三个方向有扎实项目经验: 
①用户画像与个性化建模;
②向量检索与语义相似度计算(如FAISS、HNSW、ColBERT等) ;
③对话状态跟踪(DST)、…
登录查看完整任职要求
微信扫码,1秒登录

工作职责


1.  负责面向AI手机、智能座舱等ToB场景的对话系统整体算法能力建设,包括但不限于:
①AI Memory与用户个性化建模:构建长期用户画像、兴趣演化与上下文记忆机制;
②语义检索与向量数据库算法:设计高效、低延迟的语义匹配、嵌入表示与向量索引方案; 
③LLM对话中控算法:实现多意图识别、任务路由、安全对齐、幻觉抑制与对话状态管理;
④情景感知算法:融合设备状态、环境上下文、用户行为等多源信号,实现动态对话策略; 
⑤个性化推荐与数据挖掘算法:基于对话日志与用户行为,挖掘潜在需求并驱动主动服务。
2.  主导算法从原型验证到端侧/边缘/云协同部署的全链路落地,兼顾性能、隐私与合规。
3.  与产品、系统架构、嵌入式及数据团队紧密协作,推动算法能力产品化与客户交付。
4.  持续跟踪大模型、记忆增强对话、检索增强生成(RAG)、联邦学习等前沿技术,并评估其在产业场景中的应用价值。
包括英文材料
机器学习+
学历+
NLP+
推荐系统+
算法+
大模型+
Prompt+
还有更多 •••
相关职位

logo of tongyi
社招5年以上技术类-算法

1. 负责面向AI手机、智能座舱等ToB场景的多模态交互模型研发,包括语音基础模型、视觉-语言模型(VLM)、全模态大模型的后训练(CPT/SFT/RL)与推理优化。 2. 研发基于神经网络、扩散模型或大模型的端侧音频信号处理算法(如语音增强、降噪、去混响),提升复杂声学环境下的语音交互质量。 3. 构建支持自然打断、精准判停、上下文感知的实时双工交互模型,实现低延迟、高鲁棒性的流式对话体验。 4. 针对端侧资源约束,开展模型压缩、量化、蒸馏及高效部署,确保算法在DSP/NPU等嵌入式平台稳定运行。 5. 与系统、产品团队紧密协作,推动算法从原型验证到大规模商用落地。

更新于 2025-11-22北京|上海
logo of quark
社招3年以上技术类-算法

全面负责定义、设计并实现下一代对话系统的核心算法与交互范式,解决当前对话模型在多轮交互、知识应用、共情能力等方面的挑战,探索并引领模型在个性化、主动性、拟人化等前沿方向的技术突破。直接决定数亿夸克用户在Chat场景的与AI 的交互体验,塑造夸克在未来对话式 AI 时代的领先地位。 1. 对话体验定义与规划。深入分析用户意图与行为,结合业务场景,制定并执行对话体验的中长期技术演进路线图。并密切追踪并研究对话式 AI 领域的最新进展,包括主动式对话策略、多模态对话 (语音/视觉融合)、AI Agent 中的对话流控制等。您将主导定义“顶级对话体验”的标准,并将其分解为可落地、可量化的算法迭代目标。 2. 多轮对话与上下文理解。攻坚并解决长程、复杂多轮对话中的核心技术难题,包括但不限于指令遵循、上下文精准理解、长程记忆与遗忘机制、隐式意图识别等。您将设计创新的模型结构与训练策略,使模型具备真正连贯、有逻辑的对话能力。 3. 对话回复准确与全面。主导研发将外部知识 (如搜索、工具调用) 与大模型进行深度、动态融合的先进技术。致力于解决模型在对话中的意图偏离、事实性错误、内容不详实和知识更新不及时等问题,并通过 RAG 新范式或其他创新方法,显著提升对话的准确性与信息量。 4. 评测体系与数据飞轮。建立并完善一套科学、全面的对话能力评测体系,能够精准衡量模型的综合对话质量 (Coherence, Empathy, Informativeness 等)。设计并驱动高效的数据闭环系统,利用真实用户反馈持续、自动化地优化模型。

更新于 2025-11-10北京|杭州
logo of bytedance
社招A191470

团队介绍:Data-电商-智能对话团队,致力于打造业界领先的大模型对话系统。团队服务的日活用户超过数亿,应用场景覆盖抖音电商全链路,包括平台客服、平台商服、商家客服、达人客服,以及创新的智能导购等核心业务场景,通过持续的技术创新和优化,成功构建了一套完整的智能对话解决方案,为电商业务带来了显著的效率提升和用户体验改善。 课题介绍: 背景:电商智能客服正逐渐成为业务增长和用户体验优化的重要方向,基于大型语言模型(LLM)的智能客服系统解决电商场景中的核心挑战,由LLM完成一次用户进线的完整接待过程,包括诉求澄清、方案协商、方案执行等阶段,实现电商业务的智能化升级——让用户享受更智能高效的客服服务。 研究方向:本课题聚焦于LLM 后训练与智能客服。构建基于 LLM 的多智能体(Multi-Agent)框架,通过规划、回复、工具三类Agent的协作,实现从问题分析、方案执行到结果反馈的全流程智能客服。核心目标是确保客服对话的准确性、合规性与流畅度,避免模型生成幻觉或违背平台政策。同时,围绕电商客服的复杂任务,构建 Benchmark数据集,优化SOP遵循、多轮交互、用户满意度等指标。此外,研究高效数据利用方法,探索低标注数据条件下的LLM训练,并开发自动生成高质量训练数据的系统,以降低人工标注成本,提高智能客服的服务质量与效率。 1、开发AI驱动的智能客服系统:设计并实现AI对话式客服助手,能够处理电商咨询、投诉、退款、争议解决及物流相关问题,以AI替代传统人工客服; 2、大语言模型(LLM)后训练与高效学习:应用最前沿的LLM训练优化技术,如指令微调、强化学习、持续学习等,在最少标注数据的情况下优化AI客服响应质量;具备大语言模型(LLM)微调、知识蒸馏或强化学习的相关经验,应用于对话式AI场景;深入理解检索增强生成(RAG)、专家混合模型(MoE)、稀疏注意力、强化学习、推理时间优化等技术,以提升AI对话质量; 3、基准测试与训练数据构建:识别具有挑战性的客服交互场景,如政策解读、争议处理、客户投诉、导购推荐等,并构建专门的测试集和训练集; 4、多语言与跨文化客服支持:构建能够适应多语言和不同文化背景的AI模型,确保客服交互的精准翻译和针对不同用户群体的合适响应;精通多语言自然语言处理(NLP)、机器翻译及跨语言对话建模; 5、模型优化与高效部署:研究模型压缩、量化、推理优化等技术,确保AI客服助手在大规模应用场景下具备低延迟、高可靠性的表现。

更新于 2025-05-27上海
logo of bytedance
校招A195565

团队介绍:Data-电商-智能对话团队,致力于打造业界领先的大模型对话系统。团队服务的日活用户超过数亿,应用场景覆盖抖音电商全链路,包括平台客服、平台商服、商家客服、达人客服,以及创新的智能导购等核心业务场景,通过持续的技术创新和优化,成功构建了一套完整的智能对话解决方案,为电商业务带来了显著的效率提升和用户体验改善。 课题介绍: 背景:电商智能客服正逐渐成为业务增长和用户体验优化的重要方向,基于大型语言模型(LLM)的智能客服系统解决电商场景中的核心挑战,由LLM完成一次用户进线的完整接待过程,包括诉求澄清、方案协商、方案执行等阶段,实现电商业务的智能化升级——让用户享受更智能高效的客服服务。 研究方向:本课题聚焦于LLM 后训练与智能客服。构建基于 LLM 的多智能体(Multi-Agent)框架,通过规划、回复、工具三类Agent的协作,实现从问题分析、方案执行到结果反馈的全流程智能客服。核心目标是确保客服对话的准确性、合规性与流畅度,避免模型生成幻觉或违背平台政策。同时,围绕电商客服的复杂任务,构建 Benchmark数据集,优化SOP遵循、多轮交互、用户满意度等指标。此外,研究高效数据利用方法,探索低标注数据条件下的LLM训练,并开发自动生成高质量训练数据的系统,以降低人工标注成本,提高智能客服的服务质量与效率。 1、开发AI驱动的智能客服系统:设计并实现AI对话式客服助手,能够处理电商咨询、投诉、退款、争议解决及物流相关问题,以AI替代传统人工客服; 2、大语言模型(LLM)后训练与高效学习:应用最前沿的LLM训练优化技术,如指令微调、强化学习、持续学习等,在最少标注数据的情况下优化AI客服响应质量;具备大语言模型(LLM)微调、知识蒸馏或强化学习的相关经验,应用于对话式AI场景;深入理解检索增强生成(RAG)、专家混合模型(MoE)、稀疏注意力、强化学习、推理时间优化等技术,以提升AI对话质量; 3、基准测试与训练数据构建:识别具有挑战性的客服交互场景,如政策解读、争议处理、客户投诉、导购推荐等,并构建专门的测试集和训练集; 4、多语言与跨文化客服支持:构建能够适应多语言和不同文化背景的AI模型,确保客服交互的精准翻译和针对不同用户群体的合适响应;精通多语言自然语言处理(NLP)、机器翻译及跨语言对话建模; 5、模型优化与高效部署:研究模型压缩、量化、推理优化等技术,确保AI客服助手在大规模应用场景下具备低延迟、高可靠性的表现。

更新于 2025-05-20上海