通义通义实验室-大模型Post-training算法工程师-通义千问
任职要求
1. 计算机、机器学习等方向相关专业,博士及硕士优先。 2. 具有 post-training 或强化学习相关方向经验。 3. 精通 Python 以及 Pytorch 等深度学习框架,具有较强的代码工程能力。 加分项:…
工作职责
在蕴含丰富世界知识的预训练模型的基础上,我们利用 Post-train 打造出我们想要的能够服务人类的 AI 模型。我们通过 RL、SFT、RFT 等技术,探索大模型潜能的同时,也在塑造大模型的能力与性格。本着为人类服务的目标,我们的 Post-train 将会重点探索其推理能力,实现深度思考,并致力于提升其 Agent 能力,让大模型服务于真实世界的任务。 工作职责: 1. 探索更多可 scalable 的 verifier 信号,并通过 RL 提升模型的各项能力。 2. 提升 reward model 在创作、人类偏好、指令遵循等各专项上的能力,减少reward hacking和bias。 3. 研究 reasoning path压缩和外推,实现更高质量的推理思考。 4. 将LLM的推理能力和Agent以及其他模态相结合,探索统一模态的reasoning。
在蕴含丰富世界知识的预训练模型的基础上,我们利用 Post-train 打造出我们想要的能够服务人类的 AI 模型。我们通过 RL、SFT、RFT 等技术,探索大模型潜能的同时,也在塑造大模型的能力与性格。本着为人类服务的目标,我们的 Post-train 将会重点探索其推理能力,实现深度思考,并致力于提升其 Agent 能力,让大模型服务于真实世界的任务。 工作职责: 1. 探索更多可 scalable 的 verifier 信号,并通过 RL 提升模型的各项能力。 2. 提升 reward model 在创作、人类偏好、指令遵循等各专项上的能力,减少reward hacking和bias。 3. 研究 reasoning path压缩和外推,实现更高质量的推理思考。 4. 将LLM的推理能力和Agent以及其他模态相结合,探索统一模态的reasoning。
在蕴含丰富世界知识的预训练模型的基础上,我们利用 Post-train 打造出我们想要的能够服务人类的 AI 模型。我们通过 RL、SFT、RFT 等技术,探索大模型潜能的同时,也在塑造大模型的能力与性格。本着为人类服务的目标,我们的 Post-train 将会重点探索其推理能力,实现深度思考,并致力于提升其 Agent 能力,让大模型服务于真实世界的任务。 工作职责: 1. 探索更多可 scalable 的 verifier 信号,并通过 RL 提升模型的各项能力。 2. 提升 reward model 在创作、人类偏好、指令遵循等各专项上的能力,减少reward hacking和bias。 3. 研究 reasoning path压缩和外推,实现更高质量的推理思考。 4. 将LLM的推理能力和Agent以及其他模态相结合,探索统一模态的reasoning。
通义千问(Qwen)是由通义实验室自主研发的超大规模语言模型,具备多模态、多语言、跨任务的理解与生成能力。Qwen系列模型,涵盖参数量从亿级到万亿级的基座大语言模型,并相继推出Qwen-VL、Qwen-Audio、Qwen-Omni、Qwen-Coder、Qwen-Image等系列模型。从多轮对话到代码生成,从逻辑推理到内容创作,从单一多模态到全模态统一理解生成,Qwen正在打造全球领先的全模态模型技术体系,推动AI在企业服务、开发者生态、个人用户等领域的深度应用,引领下一代人工智能的发展。 团队致力于在蕴含丰富世界知识的预训练模型的基础上,利用post-train技术打造出能够服务人类的AI模型。通过RL、SFT、RFT等技术,探索大模型潜能的同时,塑造大模型的能力与性格。重点探索大模型的推理能力,实现深度思考,并致力于提升其 agent 能力,让大模型服务于真实世界的任务。 工作职责: 1. 探索更多可Scalable的Verifier信号,并通过RL提升模型的各项能力。 2. 提升reward model在创作、人类偏好、指令遵循等各专项上的能力,减少reward hacking和bias。 3. 研究reasoning path压缩和外推,实现更高质量的推理思考。 4. 将LLM的推理能力和 agent以及其他模态相结合,探索统一模态的reasoning。
模型评估的方法决定了我们训练什么样的大模型,构建AGI模型的第一步应当是思考我们如何评测模型。随着技术的快速发展,传统的评测逐渐不适应当前的模型能力,我们需要研发下一代大模型评估系统,从而实现让大模型更好地执行真实世界任务进而服务人类的目标。 工作职责: 1. 挖掘大模型弱点,持续快速构建覆盖各项模型能力的评测数据集,探索可靠、具有可扩展性的评测方案。 2. 参与 LLM-as-a-Judge 方案构建,训练 LLM Judge / Reward Model,建模人类偏好并提升长尾任务的评价准确性。 3. 参与 Reward System 构建,设计 Reward Signal、合成对应数据,并通过 RL提升模型的能力上限。 4. 参与开发 Evaluation、Reward System 所需工程框架,简化各类测试任务和模型集成流程,帮助提高团队效率。