夸克智能信息-夸克网盘-应用算法-广州
社招全职3年以上技术类-算法地点:广州状态:招聘
任职要求
熟悉语音识别主流模型(如Conformer、RNN-T、Whisper)、翻译模型(Transformer)及优化方法,有 LLM 协助高效数据生成经验; 具备优秀的数学建模能力,扎实的数理统计、线性代数基础,能独立完成算法设计与调优; 熟悉模型加速技术(如TensorRT、ONNX优化)及实时流式系统架构设计; 在语音/翻译领域顶级会议(如ICASSP、Interspeech、ACL)发表论文,或在Kaggle、WMT等比赛中取得优异成绩; 有AIGC相关研究或落地经验(如语音生成、多模态大模型)更佳
工作职责
岗位目标:聚焦语音识别(ASR)、机器翻译及实时字幕生成技术,研发高性能、低时延的AI字幕系统,支持语音助手等场景的多语言交互需求。 具体职责包括但不限于: 1. 负责语音识别(ASR)大模型(声学模型、语言模型、解码器)的算法研发与优化:探索新型神经网络架构,提升复杂场景下的识别准确率与鲁棒性;结合对话系统需求,优化语音到文本的端到端模型,降低时延并提升多轮对话的上下文理解能力;设计并实现高效的语音语料库构建方案,覆盖多语言、多方言及噪声场景,支撑模型训练与迭代。 2. AI字幕与机器翻译系统开发:研发跨语言翻译模型(Transformer/BERT等),解决文本语义对齐与文化适配难题,支持视频字幕、剧本等场景的一键翻译;优化实时流式翻译架构,满足低时延视频字幕生成需求;结合语音识别与翻译技术,构建端到端的语音到字幕系统,提升多语言用户的观看体验。 3. 性能优化与工程化落地:推动模型轻量化、加速推理(如模型压缩、量化、蒸馏)及分布式训练,提升系统在客户端或服务端的运行效率;与工程团队协作,完成算法在移动端、PC端或云端的高效部署与性能调优。
包括英文材料
语音识别+
https://www.youtube.com/watch?v=mYUyaKmvu6Y
Learn how to implement speech recognition in Python by building five projects.
https://www.youtube.com/watch?v=sR6_bZ6VkAg
How Rev.com harnesses human-in-the-loop and deep learning to build the world's best English speech recognition engine
RNN+
https://d2l.ai/chapter_recurrent-neural-networks/rnn.html
A neural network that uses recurrent computation for hidden states is called a recurrent neural network (RNN).
https://www.deeplearningbook.org/contents/rnn.html
Recurrent neural networks, or RNNs (Rumelhart et al., 1986a), are a family of neural networks for processing sequential data.
https://www.ibm.com/think/topics/recurrent-neural-networks
A recurrent neural network or RNN is a deep neural network trained on sequential or time series data to create a machine learning (ML) model that can make sequential predictions or conclusions based on sequential inputs.
Transformer+
https://huggingface.co/learn/llm-course/en/chapter1/4
Breaking down how Large Language Models work, visualizing how data flows through.
https://poloclub.github.io/transformer-explainer/
An interactive visualization tool showing you how transformer models work in large language models (LLM) like GPT.
https://www.youtube.com/watch?v=wjZofJX0v4M
Breaking down how Large Language Models work, visualizing how data flows through.
大模型+
https://www.youtube.com/watch?v=xZDB1naRUlk
You will build projects with LLMs that will enable you to create dynamic interfaces, interact with vast amounts of text data, and even empower LLMs with the capability to browse the internet for research papers.
https://www.youtube.com/watch?v=zjkBMFhNj_g
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
TensorRT+
https://docs.nvidia.com/deeplearning/tensorrt/latest/getting-started/quick-start-guide.html
This TensorRT Quick Start Guide is a starting point for developers who want to try out the TensorRT SDK; specifically, it demonstrates how to quickly construct an application to run inference on a TensorRT engine.
ONNX+
https://github.com/onnx/tutorials
Open Neural Network Exchange (ONNX) is an open standard format for representing machine learning models.
[英文] Introduction to ONNX
https://onnx.ai/onnx/intro/
This documentation describes the ONNX concepts (Open Neural Network Exchange).
系统设计+
https://roadmap.sh/system-design
Everything you need to know about designing large scale systems.
https://www.youtube.com/watch?v=F2FmTdLtb_4
This complete system design tutorial covers scalability, reliability, data handling, and high-level architecture with clear explanations, real-world examples, and practical strategies.
Kaggle+
[英文] Kaggle Learn
https://www.kaggle.com/learn
Gain the skills you need to do independent data science projects.
相关职位
社招2年以上技术类-开发
1. 负责夸克服务端(搜索、网盘、文档、扫描王和AI工具等相关业务)技术体系的系统分析、设计,并主导完成详细设计和编码的任务,确保项目的进度和质量;主导技术难题攻关,持续提升核心系统的高处理性能。 2. 能够在团队中完成Code Review的任务,确保相关代码的有效性和正确性,并能够通过Code Review提供相关性能和稳定性的建议。 3. 理解业务,识别需求,参与架构、系统、分析设计等多领域项目的相关技术的实践、应用和研发。
更新于 2025-10-15
校招AIDU项目
-研发突破性多模态大模型架构,探索视觉-语言-语音-3D跨; -优化大模型训练策略,攻克模态对齐、知识蒸馏、强化学习等技术难题; -推动前沿技术产品化落地,在百度网盘、百度文库、TeraBox、橙篇等产品场景实现价值闭环,改变十亿级用户产品体验; -持续跟踪ICLR/NeurIPS/CVPR等顶会最新进展,保持技术领先性; -深入挖掘产品潜在价值和需求,通过技术创新推动产品成长。
更新于 2025-05-19
校招AIDU项目
-研发新一代Agent架构,实现感知-决策-执行-进化的闭环能力突破; -构建多智能体协作系统,攻克任务分解、知识共享、动态协调等群体智能难题; -优化长期记忆与推理机制,实现复杂场景下的自主学习能力与策略泛化; -推动智能体在百度网盘、百度文库、TeraBox、橙篇等产品场景实现价值闭环,改变十亿级用户产品体验。
更新于 2025-05-19