夸克智能信息-小说推荐与AI应用算法专家-小说推荐与AI应用算法专家
任职要求
1、扎实的算法和数据结构基础,优秀的业务理解能力和编码能力;在AI应用落地上有过实际的落地经验; 2、机器学习基础理论扎实,熟悉常用的算法模型(如CF、FM、Word2vec、LR、GBDT、DNN),对模型调优有深入的实践经验; 3、对推荐系统召回/排序/多样性/冷启动中一个或多个方向有过深入的实践,了解业界经典的模型和方法; 4、熟悉至少一门编程语言(/C++/python),熟悉至少一种神经网络框架(Tensorflow、Pytorch),熟悉Linux开发环境…
工作职责
1. 负责书旗、夸克及UC小说推荐相关的召回、排序、策略等算法设计与技术规划,以及在AI在小说行业的应用落地; 2. 在用户长短期兴趣建模和特征交互方式上持续研究探索,刻画并探索用户的兴趣标签,不断提高用户兴趣的匹配精度; 3. 负责用户画像计算及表征学习、兴趣发现等在小说推荐分发场景内的应用; 4. 负责小说推荐场景的用户冷启动、阅读时长和留存提升等策略设计与应用; 5. 带领团队,协同业务部门,持续推动业务发展。
阿里巴巴智能信息事业群,聚焦AI在信息服务赛道的创新应用,从工具到服务,持续为用户提供高效、智能的AI应用。智能信息事业群核心产品为夸克、通义、UC浏览器、书旗小说、超级汇川等,以多产品矩阵,覆盖横跨各年龄段的7亿+用户人群,服务超10万+客户。 负责智能信息基础技术平台系统相关研发,包括不限于以下方向: 1、构建高效可靠的云原生容器平台、提出资源优化模型以提升业务资源效率、参与机器学习工程平台的建设和优化,以及运用技术和标准化方案确保平台服务的稳定性和可维护性。 2、负责开发和优化大模型应用开发框架,创造高效的搜索应用解决方案,并深度参与智能信息系统的基础架构与组件开发,以确保技术的高效集成与实际落地。 3、开发和优化搜索引擎,高并发检索、大数据分布式存储及流批计算等系统,深入搜索业务需求设计实现解决方案,不断提高业务性能、系统稳定性,提升系统效率和成本效益。 4、开发和优化推荐引擎、模型预测和向量检索等基础系统,深入参与信息流推荐业务以实现业务需求,同时基于业务洞察设计新平台或改进现有系统,提升系统效率和成本效益。 5、开发和优化实验平台与系统,紧跟AB测试技术前沿,为业务提供精准的实验设计和分析、优化关键指标,并应用算法提高业务参数寻优的效果和效率。 6、具备数理统计基础,在数据科学、数据分析方向有经验者优先。
阿里巴巴智能信息事业群,聚焦AI在信息服务赛道的创新应用,从工具到服务,持续为用户提供高效、智能的AI应用。智能信息事业群核心产品为夸克、通义、UC浏览器、书旗小说、超级汇川等,以多产品矩阵,覆盖横跨各年龄段的7亿+用户人群,服务超10万+客户。 具体职责包括但不限于: 1、紧跟业界最新自然语言处理技术动态,深入研发并努力创新自然语言处理相关的知识库、词法、句法、语义、文档分析、深度学习、机器翻译、智能对话等技术,包括新颖的算法/模型的提出,模块的实际开发,对接自然语言处理平台的接入以及把高水平研发成果以论文/专利等形式进行发布; 2、理解自然语言处理技术应用的相关的业务场景及需求,在自然语言处理技术内核的基础上考虑业务场景的特殊性进而适当适配业务需求; 3、在核心技术研发之外,也会适当参与到具体的NLP相关业务中,例如文本内容的理解,商业场景的多语言多模态翻译和沟通,搜索Query分析、智能对话的语义解析及意图理解、商品评价的语义理解、内容搜索推荐的结构化分析、商品搜索推荐的标签体系、社会化问答的文本分析、智能客服的场景定制等。
团队介绍:字节跳动搜索团队主要负责抖音、国际化短视频、今日头条、西瓜视频等产品以及电商、生活服务等业务的搜索算法创新和架构研发工作。我们使用前沿的机器学习技术进行端到端建模并不断创新突破,同时专注于分布式系统、机器学习系统的构建和性能优化,从内存、Disk等优化到索引压缩、召回、排序等算法的探索,充分给同学们提供成长自我的机会。主要工作方向包括:1、探索前沿的NLP技术:从基础的分词、NER,文本、多模态预训练,到业务上的Query分析、基础相关性等,全链路应用深度学习模型,每个细节都充满挑战;2、跨模态匹配技术:在搜索中应用CV+NLP深度学习技术,实现多模态视频搜索强大的语义理解和检索能力;3、大规模流式机器学习技术:应用大规模机器学习,解决搜索中的推荐问题,让搜索更加个性化更加懂你;4、千亿级数据规模的架构:从大规模离线计算,分布式系统的性能、调度优化,到构建高可用、高吞吐和低延迟的在线服务的方方面面都有深入研究和创新;5、推荐技术:基于超大规模机器学习技术,构建业界领先的搜索推荐系统,对搜索推荐技术进行探索和创新。 课题介绍:随着大模型技术的快速发展,智能搜索领域迎来了新的机遇和挑战。传统搜索技术在面对海量数据、多模态信息以及用户复杂需求时,逐渐暴露出模型容量不足、语义理解能力有限、资源利用率低等问题。基于大模型的智能搜索构建旨在通过引入大模型技术,提升搜索系统的智能化水平,优化用户体验,并解决超大规模检索、复杂语义理解、资源高效利用等核心问题。具体目标包括: 1、探索大模型与排序算法的结合,提升个性化排序的精度和用户体验; 2、研究生成式检索算法,解决百亿乃至千亿级别候选库的超大规模检索问题; 3、利用大语言模型(LLM)提升复杂多义Query的搜索满意度。 1、参与搜索引擎(策略、模型)研发工作,支持抖音/今日头条/电商/番茄小说/红果短剧等具有数亿用户的产品,致力于为数亿用户提供数千亿精准搜索结果,打造极致的搜索体验; 2、探索前沿技术,探索大模型等创新技术在AI搜索场景的落地,参与搜索引擎、搜索大模型的改进,包括而不限于: 1)NLP、大模型:构建大规模高质量数据(数据建设、数据抓取与解析、数据合成等)、分词、NER,文本、多模态预训练、Query分析、基础相关性等,全链路结合应用机器学习/深度学习模型,探索搜索引擎与大模型、LLM、MLLM、多模态、机器学习、强化学习等前沿技术的结合,实现搜索引擎全链路革新并进行极致的系统优化,探索提升AI搜索引擎的能力,包含而不限于相关性、权威性、时效性、意图理解能力等;探索新的自然语言处理算法、信息检索技术、LLM适性索引、LLM相关性、生成式召回、排序大模型等,提高搜索引擎的准确性和智能化程度; 2)召回与排序:借助语义理解、个性化预估、机制设计等技术,解决超大规模的视频、商品、直播、POI等搜索业务下的召回、排序、重混排模型; 3)多模态、跨模态匹配技术:基于海量网页图文、抖音视频数据的大规模多模态预训练和视频分析技术,提升视觉搜索的使用体验;在搜索中结合CV+NLP深度学习技术,实现多模态、视频搜索、强大的语义理解和检索能力; 4)页面分析和摘要:从千亿视频/网页中提取最有价值的信息,进行结构化字段提取、智能摘要生成、转码等工作来优化搜索体验; 5)链接分析:从万亿链接中找出最有价值的网页,优化链接质量、索引质量、垃圾作弊识别、调度策略等。
团队介绍:字节跳动搜索团队主要负责抖音、国际化短视频、今日头条、西瓜视频等产品以及电商、生活服务等业务的搜索算法创新和架构研发工作。我们使用前沿的机器学习技术进行端到端建模并不断创新突破,同时专注于分布式系统、机器学习系统的构建和性能优化,从内存、Disk等优化到索引压缩、召回、排序等算法的探索,充分给同学们提供成长自我的机会。主要工作方向包括:1、探索前沿的NLP技术:从基础的分词、NER,文本、多模态预训练,到业务上的Query分析、基础相关性等,全链路应用深度学习模型,每个细节都充满挑战;2、跨模态匹配技术:在搜索中应用CV+NLP深度学习技术,实现多模态视频搜索强大的语义理解和检索能力;3、大规模流式机器学习技术:应用大规模机器学习,解决搜索中的推荐问题,让搜索更加个性化更加懂你;4、千亿级数据规模的架构:从大规模离线计算,分布式系统的性能、调度优化,到构建高可用、高吞吐和低延迟的在线服务的方方面面都有深入研究和创新;5、推荐技术:基于超大规模机器学习技术,构建业界领先的搜索推荐系统,对搜索推荐技术进行探索和创新。 课题介绍:随着大模型技术的快速发展,智能搜索领域迎来了新的机遇和挑战。传统搜索技术在面对海量数据、多模态信息以及用户复杂需求时,逐渐暴露出模型容量不足、语义理解能力有限、资源利用率低等问题。基于大模型的智能搜索构建旨在通过引入大模型技术,提升搜索系统的智能化水平,优化用户体验,并解决超大规模检索、复杂语义理解、资源高效利用等核心问题。具体目标包括: 1、探索大模型与排序算法的结合,提升个性化排序的精度和用户体验; 2、研究生成式检索算法,解决百亿乃至千亿级别候选库的超大规模检索问题; 3、利用大语言模型(LLM)提升复杂多义Query的搜索满意度。 1、参与搜索引擎(策略、模型)研发工作,支持抖音/今日头条/电商/番茄小说/红果短剧等具有数亿用户的产品,致力于为数亿用户提供数千亿精准搜索结果,打造极致的搜索体验; 2、探索前沿技术,探索大模型等创新技术在AI搜索场景的落地,参与搜索引擎、搜索大模型的改进,包括而不限于: 1)NLP、大模型:构建大规模高质量数据(数据建设、数据抓取与解析、数据合成等)、分词、NER,文本、多模态预训练、Query分析、基础相关性等,全链路结合应用机器学习/深度学习模型,探索搜索引擎与大模型、LLM、MLLM、多模态、机器学习、强化学习等前沿技术的结合,实现搜索引擎全链路革新并进行极致的系统优化,探索提升AI搜索引擎的能力,包含而不限于相关性、权威性、时效性、意图理解能力等;探索新的自然语言处理算法、信息检索技术、LLM适性索引、LLM相关性、生成式召回、排序大模型等,提高搜索引擎的准确性和智能化程度; 2)召回与排序:借助语义理解、个性化预估、机制设计等技术,解决超大规模的视频、商品、直播、POI等搜索业务下的召回、排序、重混排模型; 3)多模态、跨模态匹配技术:基于海量网页图文、抖音视频数据的大规模多模态预训练和视频分析技术,提升视觉搜索的使用体验;在搜索中结合CV+NLP深度学习技术,实现多模态、视频搜索、强大的语义理解和检索能力; 4)页面分析和摘要:从千亿视频/网页中提取最有价值的信息,进行结构化字段提取、智能摘要生成、转码等工作来优化搜索体验; 5)链接分析:从万亿链接中找出最有价值的网页,优化链接质量、索引质量、垃圾作弊识别、调度策略等。