腾讯推荐算法工程师(push核心策略方向)
社招全职手机浏览器-信息流技术地点:北京状态:招聘
任职要求
1.熟悉Python/C++语言编程,对数据结构和算法设计有较为深刻的理解; 2.具有以下一个或多个领域的理论背景和实践经验,包括机器学习/深度学习/强化学习/自然语言处理/推荐系统/信息检索等; 3.熟悉常用的推荐算法,动手实战能力强,具备将算法应用于实际生产系统的经验和能力; 4.具备优秀的逻辑思维能力,善于分析问题和解决问题,有强烈的上进心、求知欲和学习能力。
工作职责
1.参与QQ浏览器个性化push核心策略的研发工作,为用户提供更好的个性化PUSH推荐体验; 2.负责业界领先推荐算法的调研和评估,通过深度学习、强化学习等技术对产品目标建模,并通过特征、模型优化等持续优化模型效果; 3.通过对数据的敏锐洞察,深入挖掘产品潜在价值和需求,通过技术创新推动产品成长; 4.在push推荐场景,将人工智能前沿技术与业务相结合,打造最懂用户的个性化推送系统。
包括英文材料
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
数据结构+
https://www.youtube.com/watch?v=8hly31xKli0
In this course you will learn about algorithms and data structures, two of the fundamental topics in computer science.
https://www.youtube.com/watch?v=B31LgI4Y4DQ
Learn about data structures in this comprehensive course. We will be implementing these data structures in C or C++.
https://www.youtube.com/watch?v=CBYHwZcbD-s
Data Structures and Algorithms full course tutorial java
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
强化学习+
https://cloud.google.com/discover/what-is-reinforcement-learning?hl=en
Reinforcement learning (RL) is a type of machine learning where an "agent" learns optimal behavior through interaction with its environment.
https://huggingface.co/learn/deep-rl-course/unit0/introduction
This course will teach you about Deep Reinforcement Learning from beginner to expert. It’s completely free and open-source!
https://www.kaggle.com/learn/intro-to-game-ai-and-reinforcement-learning
Build your own video game bots, using classic and cutting-edge algorithms.
NLP+
https://www.youtube.com/watch?v=fNxaJsNG3-s&list=PLQY2H8rRoyvzDbLUZkbudP-MFQZwNmU4S
Welcome to Zero to Hero for Natural Language Processing using TensorFlow!
https://www.youtube.com/watch?v=R-AG4-qZs1A&list=PLeo1K3hjS3uuvuAXhYjV2lMEShq2UYSwX
Natural Language Processing tutorial for beginners series in Python.
https://www.youtube.com/watch?v=rmVRLeJRkl4&list=PLoROMvodv4rMFqRtEuo6SGjY4XbRIVRd4
The foundations of the effective modern methods for deep learning applied to NLP.
推荐系统+
[英文] Recommender Systems
https://www.d2l.ai/chapter_recommender-systems/index.html
Recommender systems are widely employed in industry and are ubiquitous in our daily lives.
信息检索+
https://nlp.stanford.edu/IR-book/information-retrieval-book.html
Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction to Information Retrieval, Cambridge University Press. 2008.
相关职位
社招MEG
-负责Push推荐系统的核心策略设计与优化,包括但不限于召回、排序、重排、机制等环节,提升推送内容的点击率、转化率及用户体验 -探索多目标学习(如CTR、时长、留存、GMV等多目标平衡)、实时个性化推荐、深度强化学习等前沿技术,提升推送效果 -针对Push场景特性,优化时效性内容分发、择时场景化分发、用户疲劳度控制等关键问题 -持续学习和调研先进技术和行业动态,关注竞品发展,以技术先进性驱动业务发展
更新于 2025-06-05
社招算法开发岗
利用机器学习、强化学习、因果推断、LLM、多模态大模型等前沿技术,基于京东海量数据建模用户行为序列、识别兴趣偏好/购买力等用户意图、理解商品文本/图片/视频、优化权益和商品分发策略,提高京东搜推用户的购买体验和效率。 核心职责包括: 1、策略优化:负责搜推用户理解、权益分发、push触达等方向算法工作(包括意图识别、召回、排序、多目标等); 2、商品理解:建设商品知识体系并挖掘商品多模态统一表征,优化搜推用户体验提升分发模型效果; 3、多模态大模型:深入理解搜索/推荐业务场景(如信息抽取、知识生成、智能问答等),设计并实现基于多模态大模型的创新技术解决方案,能有效解决复杂业务场景下的用户体验问题。
更新于 2025-09-09
社招MEG
-参与百度APP、贴吧、好看等多产品线的个性化push核心策略的研发工作,为数亿用户提供卓越的个性化推荐体验 -负责业界领先推荐算法的调研和评估,通过超大规模深度学习、强化学习等技术对产品目标建模,并通过特征、模型优化等持续优化模型效果 -通过对数据的敏锐洞察,深入挖掘产品潜在价值和需求,通过技术创新推动产品成长 -在个性化推荐的场景下,将人工智能前沿技术与业务相结合,打造最懂用户的个性化推送系统
更新于 2025-03-28