百度大模型数据策略工程师(J82293)
社招全职ACG地点:北京 | 上海状态:招聘
任职要求
-熟练掌握 Python/GO 中至少一种编程语言,具备良好的编码习惯和常用设计模式的理解 -具备大规模的预训练/指令/偏好数据的收集、清洗、构建经验,有大模型数据合成、图文多模态数据处理经验者优先 -熟悉大模型评测方式和各类评估指标,对如何准确、高效地评估大模型各类能力有实践经验 -熟悉大模型调优,有开源大模型的Pretrain/SFT等训练经验,有多模态训练/调优经验的优先 -熟练使用Docker、Kubernetes相关生态和工具,熟悉Spark等大规模数据处理框架者优先 -具备良好的沟通以及团队合作能力,拥有较强的学习意愿和能力,能够快速掌握工作所需的知识和技能
工作职责
-负责大模型数据合成相关工作,包括技术调研、数据生成与处理、模型训练及效果评估 -负责大规模文本、多模态数据的处理与清洗工作,优化数据质量 -支持大模型在实际业务场景中的应用落地,负责平台客户的场景建模任务,将模型算法落地到客户的业务场景中 -与其他角色和团队合作,共同完成相关项目需求
包括英文材料
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
Go+
https://www.youtube.com/watch?v=8uiZC0l4Ajw
学习Golang的完整教程!从开始到结束不到一个小时,包括如何在Go中构建API的完整演示。没有多余的内容,只有你需要知道的知识。
编程规范+
[英文] Google Style Guides
https://google.github.io/styleguide/
Every major open-source project has its own style guide: a set of conventions (sometimes arbitrary) about how to write code for that project. It is much easier to understand a large codebase when all the code in it is in a consistent style.
设计模式+
https://liaoxuefeng.com/books/java/design-patterns/index.html
设计模式,即Design Patterns,是指在软件设计中,被反复使用的一种代码设计经验。使用设计模式的目的是为了可重用代码,提高代码的可扩展性和可维护性。
[英文] Design Patterns
https://refactoring.guru/design-patterns
Design patterns are typical solutions to common problems in software design. Each pattern is like a blueprint that you can customize to solve a particular design problem in your code.
https://www.youtube.com/watch?v=NU_1StN5Tkk
Design Patterns tutorial explained in simple words using real-world examples.
大模型+
https://www.youtube.com/watch?v=xZDB1naRUlk
You will build projects with LLMs that will enable you to create dynamic interfaces, interact with vast amounts of text data, and even empower LLMs with the capability to browse the internet for research papers.
https://www.youtube.com/watch?v=zjkBMFhNj_g
SFT+
https://cameronrwolfe.substack.com/p/understanding-and-using-supervised
Understanding how SFT works from the idea to a working implementation...
Docker+
https://www.youtube.com/watch?v=GFgJkfScVNU
Master Docker in one course; learn about images and containers on Docker Hub, running multiple containers with Docker Compose, automating workflows with Docker Compose Watch, and much more. 🐳
https://www.youtube.com/watch?v=kTp5xUtcalw
Learn how to use Docker and Kubernetes in this complete hand-on course for beginners.
Kubernetes+
https://kubernetes.io/docs/tutorials/kubernetes-basics/
This tutorial provides a walkthrough of the basics of the Kubernetes cluster orchestration system.
https://kubernetes.io/zh-cn/docs/tutorials/kubernetes-basics/
本教程介绍 Kubernetes 集群编排系统的基础知识。每个模块包含关于 Kubernetes 主要特性和概念的一些背景信息,还包括一个在线教程供你学习。
https://www.youtube.com/watch?v=s_o8dwzRlu4
Hands-On Kubernetes Tutorial | Learn Kubernetes in 1 Hour - Kubernetes Course for Beginners
https://www.youtube.com/watch?v=X48VuDVv0do
Full Kubernetes Tutorial | Kubernetes Course | Hands-on course with a lot of demos
Spark+
[英文] Learning Spark Book
https://pages.databricks.com/rs/094-YMS-629/images/LearningSpark2.0.pdf
This new edition has been updated to reflect Apache Spark’s evolution through Spark 2.x and Spark 3.0, including its expanded ecosystem of built-in and external data sources, machine learning, and streaming technologies with which Spark is tightly integrated.
相关职位
社招MEG
-参与Feed推荐系统核心模块研发,设计并持续优化互动推荐算法,提高推荐准确性和个性化,增强用户互动体验。 -通过互动数据分析挖掘用户行为规律,制定并调整推荐策略,提升推荐效果。 -深入理解评论生成、精调评论生成模型、prompt优化,并与跨部门团队紧密合作,将推荐算法与业务需求结合,优化互动区产品体验。 -关注技术前沿,引入新技术,推动推荐算法的创新与优化。
更新于 2025-01-20
实习
参与大模型数据清洗及处理技术的研发与优化,包括但不限于: 1.大模型数据质量的持续提升改进与实现; 2.参与数据主题分类模型的构建 3.VLM数据的合成与生产的协同优化; 4.提示工程(Prompt Engineering)的探索 5.构建和评测数据的质量及评估的方法及评测集的构建 6.跟进学术界与工业界最新进展。
更新于 2025-09-09
实习ACG
-参与大模型数据策略与数据迭代(文本/多模态/代码),负责大规模数据构建与合成,支撑预训练/对齐效果 -协助多模态、代码与工具调用数据的构建,进行包括分布式的清洗、合成、近重复/噪声检测与去重,建立难例库与反馈闭环,持续提升数据质量与密度 -参与数据质量评估与筛选算法的实现:低质过滤,质量评分、LLM判别与复核等;针对代码与工具调用场景,引入编译/单测/沙箱执行/参数一致性校验 -支持对齐与偏好学习数据,配合消融实验及评测指标分析,输出采样/准入/退场/权重等数据策略并推动落地
更新于 2025-09-12