百度推荐算法工程师(生成式推荐-召回&排序&融合方向)(J77317)
社招全职MEG地点:北京状态:招聘
任职要求
-具有以下一个或多个领域的理论背景和实践经验:机器学习/数据挖掘/深度学习/信息检索/自然语言处理/机制设计/博弈论 -至少精通一门编程语言,熟悉网络编程、多线程、分布式编程技术,对数据结构和算法设计有较为深刻的理解 -负责生成式推荐策略的设计与实现,包括内容生成模型的构建、特征工程、算法优化等,以提高推荐内容的多样性和相关性
工作职责
-推荐策略部坐标百度双引擎(搜索+信息流)核心业务,以Feed推荐体验的最终呈现,提供推荐能力平台化服务 -研究数据挖掘或统计学习领域的前沿技术,并用于实际问题的解决和优化 -大规模机器学习算法研究及并行化实现,为各种大规模机器学习应用研发核心技术 -深入理解用户需求和行为模式,利用先进的生成式AI技术(如深度学习、自然语言处理等)优化推荐效果,提升用户体验和平台活跃度
包括英文材料
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
数据挖掘+
https://www.youtube.com/watch?v=-bSkREem8dM
Database vs Data Warehouse vs Data Lake
https://www.youtube.com/watch?v=7rs0i-9nOjo
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
信息检索+
https://nlp.stanford.edu/IR-book/information-retrieval-book.html
Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction to Information Retrieval, Cambridge University Press. 2008.
NLP+
https://www.youtube.com/watch?v=fNxaJsNG3-s&list=PLQY2H8rRoyvzDbLUZkbudP-MFQZwNmU4S
Welcome to Zero to Hero for Natural Language Processing using TensorFlow!
https://www.youtube.com/watch?v=R-AG4-qZs1A&list=PLeo1K3hjS3uuvuAXhYjV2lMEShq2UYSwX
Natural Language Processing tutorial for beginners series in Python.
https://www.youtube.com/watch?v=rmVRLeJRkl4&list=PLoROMvodv4rMFqRtEuo6SGjY4XbRIVRd4
The foundations of the effective modern methods for deep learning applied to NLP.
网络编程+
https://www.youtube.com/watch?v=2HrYIl6GpYg
I will make a simple HTTP web server with the C Programming Language.
https://www.youtube.com/watch?v=8z6okCgdREo
This tutorial is for Gophers who have written a command line or an API application, but have little to no experience in lower-level concepts like reading and writing to sockets, working with channels, and managing multiple goroutines.
https://www.youtube.com/watch?v=bdIiTxtMaKA&list=PL9IEJIKnBJjH_zM5LnovnoaKlXML5qh17
https://www.youtube.com/watch?v=bzja9fQWzdA
Implement the ubiquitous TCP protocol that underlies much of the traffic on the internet!
[英文] 📺Network Programming with Python Course (build a port scanner, mailing client, chat room, DDOS)
https://www.youtube.com/watch?v=FGdiSJakIS4
Learn network programming in Python by building four projects. You will learn to build a mailing client, a DDOS script, a port scanner, and a TCP Chat Room.
https://www.youtube.com/watch?v=gntyAFoZp-E
https://www.youtube.com/watch?v=JiuouCJQzSQ
Explore the fundamentals of networking in Rust by building a simple TCP server.
https://www.youtube.com/watch?v=JRTLSxGf_6w
https://www.youtube.com/watch?v=sFizpxHkIlI
In this video we'll cover SOCKET PROGRAMMING in JAVA.
https://www.youtube.com/watch?v=sXW_sNGvqcU
多线程+
https://liaoxuefeng.com/books/java/threading/basic/index.html
和单线程相比,多线程编程的特点在于:多线程经常需要读写共享数据,并且需要同步。
https://www.youtube.com/watch?v=_uQgGS_VIXM&list=PLsc-VaxfZl4do3Etp_xQ0aQBoC-x5BIgJ
https://www.youtube.com/watch?v=IEEhzQoKtQU
https://www.youtube.com/watch?v=mTGdtC9f4EU&list=PLL8woMHwr36EDxjUoCzboZjedsnhLP1j4
https://www.youtube.com/watch?v=TPVH_coGAQs&list=PLk6CEY9XxSIAeK-EAh3hB4fgNvYkYmghp
https://www.youtube.com/watch?v=xPqnoB2hjjA
This video is an introduction to multithreading in modern C++.
https://www.youtube.com/watch?v=YKBwKy5PrpQ
Rust threading is easy to implement and improves the efficiency of your applications on multi-core systems!
数据结构+
https://www.youtube.com/watch?v=8hly31xKli0
In this course you will learn about algorithms and data structures, two of the fundamental topics in computer science.
https://www.youtube.com/watch?v=B31LgI4Y4DQ
Learn about data structures in this comprehensive course. We will be implementing these data structures in C or C++.
https://www.youtube.com/watch?v=CBYHwZcbD-s
Data Structures and Algorithms full course tutorial java
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
特征工程+
https://www.ibm.com/think/topics/feature-engineering
Feature engineering preprocesses raw data into a machine-readable format. It optimizes ML model performance by transforming and selecting relevant features.
https://www.kaggle.com/learn/feature-engineering
Better features make better models. Discover how to get the most out of your data.
相关职位
社招MEG
-推荐策略部坐标百度双引擎(搜索+信息流)核心业务,以Feed推荐体验的最终呈现,提供推荐能力平台化服务。 -研究数据挖掘或统计学习领域的前沿技术,并用于实际问题的解决和优化 -大规模机器学习算法研究及并行化实现,为各种大规模机器学习应用研发核心技术 -深入理解用户需求和行为模式,利用先进的生成式AI技术(如深度学习、自然语言处理等)优化推荐效果,提升用户体验和平台活跃度
更新于 2024-11-14
社招A243211
1、多模态内容理解与应用:构建视频/直播多模态表征体系,融合视觉、音频、文本特征实现多层级语义刻画,优化标签体系与用户兴趣画像,提升内容与用户兴趣匹配精度,解决冷启动问题; 2、推荐系统全链路优化:参与召回、粗排、精排、混排全链路算法设计,针对直播/短视频场景需求优化推荐效果;搭建离线评估体系,确保离线指标与线上业务目标对齐; 3、前沿技术落地探索:推动生成式推荐在短视频/直播场景落地,结合大模型探索创新推荐范式;解析模型评测数据,完成算法工程化落地,协同产品、工程团队提升推荐全链路价值。
更新于 2025-06-17
社招A61873
1、多模态内容理解与应用:构建视频/直播多模态表征体系,融合视觉、音频、文本特征实现多层级语义刻画,优化标签体系与用户兴趣画像,提升内容与用户兴趣匹配精度,解决冷启动问题; 2、推荐系统全链路优化:参与召回、粗排、精排、混排全链路算法设计,针对直播/短视频场景需求优化推荐效果;搭建离线评估体系,确保离线指标与线上业务目标对齐; 3、前沿技术落地探索:推动生成式推荐在短视频/直播场景落地,结合大模型探索创新推荐范式;解析模型评测数据,完成算法工程化落地,协同产品、工程团队提升推荐全链路价值。
更新于 2025-06-17