快手算法策略工程师(电商方向)
社招全职3-5年D6225地点:北京状态:招聘
任职要求
1、硕士及以上学历,3-5年工作经验;计算机科学、数据科学、统计学、金融学相关专业优先,且具备较强的数理统计基础和逻辑思维能力; 2、熟悉常见的机器学习和深度学习模型的优缺点和适用场景; 3、熟悉TensorFlow/Pytorch等主流深度学习框架,并有实际的模型训练、调优的项目经验; 4、有较强的编程和算法实现能力,具备Python/Scala/Java开发经验,能够独立完成算法模块设计开发和测试,了解常用Shell命令; 5、具备一定分布式、大数据软件开发经验,熟悉Hive、Spark等大数据开发工具; 6、抗压能力强,学习能力强,工作细心有责任感,有较强的自我驱动力;有良好的团队合作和沟通能力,能够跨部门合作推进项目进展。 加分项: 1、有推荐系统、机器学习、自然语言理解相关领域研究或者实习经验者优先; 2、有因果推断,Uplifting model相关建模经验者优先。
工作职责
1、整合挖掘海量站内外数据,进行全域资产体系的建设,包括但不限于时空资产、用户画像、创作者和作品资产; 2、深入电商垂直业务场景,分析洞察业务痛点,发掘机会点,利用算法挖掘能力助力业务发展; 3、研究前沿的机器学习/数据挖掘算法,在业务现实场景中进行落地应用,提升算法效果。
包括英文材料
学历+
数据科学+
https://roadmap.sh/ai-data-scientist
Step by step roadmap guide to becoming an AI and Data Scientist
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
Scala+
Java+
https://www.youtube.com/watch?v=eIrMbAQSU34
Master Java – a must-have language for software development, Android apps, and more! ☕️ This beginner-friendly course takes you from basics to real coding skills.
Bash+
[英文] The Bash Guide
https://guide.bash.academy/
A quality-driven guide through the shell's many features.
https://www.youtube.com/watch?v=tK9Oc6AEnR4
Understanding how to use bash scripting will enhance your productivity by automating tasks, streamlining processes, and making your workflow more efficient.
大数据+
https://www.youtube.com/watch?v=bAyrObl7TYE
https://www.youtube.com/watch?v=H4bf_uuMC-g
With all this talk of Big Data, we got Rebecca Tickle to explain just what makes data into Big Data.
Hive+
[英文] Hive Tutorial
https://www.tutorialspoint.com/hive/index.htm
Hive is a data warehouse infrastructure tool to process structured data in Hadoop. It resides on top of Hadoop to summarize Big Data, and makes querying and analyzing easy.
https://www.youtube.com/watch?v=D4HqQ8-Ja9Y
Spark+
[英文] Learning Spark Book
https://pages.databricks.com/rs/094-YMS-629/images/LearningSpark2.0.pdf
This new edition has been updated to reflect Apache Spark’s evolution through Spark 2.x and Spark 3.0, including its expanded ecosystem of built-in and external data sources, machine learning, and streaming technologies with which Spark is tightly integrated.
推荐系统+
[英文] Recommender Systems
https://www.d2l.ai/chapter_recommender-systems/index.html
Recommender systems are widely employed in industry and are ubiquitous in our daily lives.
因果推断+
https://web.stanford.edu/~swager/causal_inf_book.pdf
How best to understand and characterize causality is an age-old question in philosophy.
相关职位

社招5年以上技术类
推荐/搜索算法方向: 1、支持快速增长、大规模dau的得物电商业务的推荐/搜索算法工作。职责范围包括提升转化效率,改善购物体验,探索更高效的商业模式,提升内容生态健康程度等; 2、利用海量数据搭建业内领先的机器学习算法和架构,建模用户购物兴趣,提升用户体验; 3、应用先进的机器学习技术,解决各种在线/离线、大数据量/小数据量等不同场景中遇到的技术和业务挑战,包括多类型内容分发、新用户承接、新品冷启动等; 4、对电商生态中用户、商家的行为做深入的分析和理解,制定算法策略促进生态良性发展; 5、独立负责产业务场景中的一个模块,与产品、运营团队一起,对模块的未来发展进行规划和设计,制定推荐策略的目标。 图像算法方向: 1、研究包括但不限于目标检测、分割与分类方向; 2、结合实际应用场景,提供全面技术方案,包括但不限于模型训练、评估、部署; 3、挖掘发现公司潜在业务需求,推动业务落地。
更新于 2024-12-25
社招1年以上D12928
1、负责快手电商场景违规风险识别的策略开发及模型研究工作; 2、深入理解业务本质,运用各类分析方法对业务日志、用户行为数据进行分析与抽象,识别电商生态中的低质商家/带货主播及各类不良内容,解决内容风险问题; 3、推动建立面向各大数据应用场景的数据体系,包括但不限于指标体系/评价体系/标签体系,能快速发现及定位疑似风险的内容和行为; 4、完成各类策略实现,对策略效果进行准确评估并推动上线,并持续完善与优化。
更新于 2025-04-11
社招JKMDP
1、参与字节跳动直播变现业务的优化,服务亿级全球用户的直播体验; 2、采用前沿的机器学习算法模型,对海量用户行为和消费数据进行科学的建模,构建高性能/高可靠的架构服务,给用户在直播消费上带来极致体验; 3、深入参与产品/业务的讨论,充分分析和理解用户行为模式,为整体业务提供优化方向。
更新于 2021-03-28