快手大客户广告销售(生服效果广告方向)-【商业化】
任职要求
1、本科及以上学历,非常优秀者可大专以上;
2、有本地生活行业平台客户广告销售经验者优先;
3、有较强的沟通能力,具备良好的客户开拓、服务能力,优秀的销售、谈判以及口笔表达交流的技巧;
4、能适应工作压力和敢于面对挑战,有良好的客户群体关系;
5、具有敏锐的市场洞察力,超强的执行力。
能力要求:
1、熟悉内容平台广告投放能力(达人,加热,dsp,联盟等),对客户运营,流量运营等有经验;
2、优质的品格:勤奋,爱学习,有好奇心,坚韧,包容,热情,利他,团队至上,做事极致,责任感等,拥有上述性格的至少一项,起判标准是该品格在自己圈子里足够突出;
3、出色的世界观:对世界有独到的理解,或经常有不同于他人的想法,或认知边界宽广,或对行业有足够纵深的了解;
4、优秀的工作能力:领导力,组织力,协调力,公关力,沟通力,逻辑能力,高情商,高智商的一种或多种,需要有对应的工作经历或成果作为验证;
5、工作经验:极度匹配的工作履历,或丰富的行业资源,或独有的行业资源,或行业影响力等。
工作职责
1、负责生活服务平台类客户的(如美团/58等,美团最优)客户服务及客户运营工作,承接客户拉新/拉活的营销诉求并协同内部团队交付结果; 2、为客户效果预算获取,消耗及平台市场份额占比提升负责,可根据竞对平台能力反向推动内部提升商业产品能力并迭代运营体系; 3、可结合平台在内容,广告,电商,本地等商业能力,为客户不同业务线的营销诉求提供解决方案并交付结果; 4、提供与客户建立深度合作关系,快速解决各种问题和挑战。
团队介绍:1、业务方向:自助业务希望建成中小商家的业务中台,电商广告、生服广告、Dou+等多条业务线,一站式解决商家问题,助力商家成长,提升商家数字化经营能力;2、技术亮点:自助技术分为智能销售、客户增长、营销活动几个方向;客户增长方向主要利用Uplift建模、因果推断、运筹优化算法、推荐算法等,通过对客户初期的行为习惯进行挖掘,探索更优的发券、选品、选素材等相关策略,提升拉新指标;智能销售方向主要通过LLM-Agent的形式,利用sft、rl等算法优化广告领域的服务能力,提升对中小客户的教育、辅导、服务等能力,进而提升长期客户消耗;营销活动方向主要服务商业化运营团队,辅助运营完成营销活动的创建与推广。 课题背景: 为了长期优化广告客户生态以及收入增长,商业化需要更大规模的做好客户拉新和客户在投放成长初期的留存,那么如何精准定位目标人群、如何更有效的利用激励手段促进客户增长、如何优化当前客户动作和投放手段,就是一个必须要长期优化的方向。 现在的增长方向主要靠传统机器学习的手段来决策激励的发放,但效果提升已经遇到瓶颈,需要探索基于RL的因果推断技术。另一方面,客户成长初期目前无法获得足够的服务与帮助,结合上广告投放本身有较高学习门槛,所以现在亟需依赖LLM技术,实现智能销售的愿景——包括智能客服、智能销售、智能投手三个阶段,最终达到全智能化的托管式服务。 课题挑战: 相比抖音C端流量数据,广告客户数据相对波动较大,观测周期长,有更多的不确定性;大语言模型在广告领域的能力依然不足,具体表现在领域知识理解不足,大量专业工具(百量级)的使用效率不高,业务回复的可解释性不够强。为了达到人工销售的水平,需要探索RL、探索reward system、探索deep research的实现、探索业务向Benchmark的范式等等;相比传统客服的问答式工作,还需要探索LLM在主动服务方向的开放命题。
团队介绍:1、业务方向:自助业务希望建成中小商家的业务中台,电商广告、生服广告、Dou+等多条业务线,一站式解决商家问题,助力商家成长,提升商家数字化经营能力;2、技术亮点:自助技术分为智能销售、客户增长、营销活动几个方向客户增长方向主要利用Uplift建模、因果推断、运筹优化算法、推荐算法等,通过对客户初期的行为习惯进行挖掘,探索更优的发券、选品、选素材等相关策略,提升拉新指标智能销售方向主要通过LLM-Agent的形式,利用sft、rl等算法优化广告领域的服务能力,提升对中小客户的教育、辅导、服务等能力,进而提升长期客户消耗营销活动方向主要服务商业化运营团队,辅助运营完成营销活动的创建与推广。 课题背景: 为了长期优化广告客户生态以及收入增长,商业化需要更大规模的做好客户拉新和客户在投放成长初期的留存,那么如何精准定位目标人群、如何更有效的利用激励手段促进客户增长、如何优化当前客户动作和投放手段,就是一个必须要长期优化的方向。 现在的增长方向主要靠传统机器学习的手段来决策激励的发放,但效果提升已经遇到瓶颈,需要探索基于RL的因果推断技术。另一方面,客户成长初期目前无法获得足够的服务与帮助,结合上广告投放本身有较高学习门槛,所以现在亟需依赖LLM技术,实现智能销售的愿景——包括智能客服、智能销售、智能投手三个阶段,最终达到全智能化的托管式服务。 课题挑战: 相比抖音C端流量数据,广告客户数据相对波动较大,观测周期长,有更多的不确定性;大语言模型在广告领域的能力依然不足,具体表现在领域知识理解不足,大量专业工具(百量级)的使用效率不高,业务回复的可解释性不够强。为了达到人工销售的水平,需要探索RL、探索reward system、探索deep research的实现、探索业务向Benchmark的范式等等;相比传统客服的问答式工作,还需要探索LLM在主动服务方向的开放命题。
团队介绍:1、业务方向:自助业务希望建成中小商家的业务中台,电商广告、生服广告、Dou+等多条业务线,一站式解决商家问题,助力商家成长,提升商家数字化经营能力; 2、技术亮点:自助技术分为智能销售、客户增长、营销活动几个方向; 客户增长方向主要利用Uplift建模、因果推断、运筹优化算法、推荐算法等,通过对客户初期的行为习惯进行挖掘,探索更优的发券、选品、选素材等相关策略,提升拉新指标; 智能销售方向主要通过LLM-Agent的形式,利用sft、rl等算法优化广告领域的服务能力,提升对中小客户的教育、辅导、服务等能力,进而提升长期客户消耗; 营销活动方向主要服务商业化运营团队,辅助运营完成营销活动的创建与推广。 课题背景: 为了长期优化广告客户生态以及收入增长,商业化需要更大规模的做好客户拉新和客户在投放成长初期的留存,那么如何精准定位目标人群、如何更有效的利用激励手段促进客户增长、如何优化当前客户动作和投放手段,就是一个必须要长期优化的方向。 现在的增长方向主要靠传统机器学习的手段来决策激励的发放,但效果提升已经遇到瓶颈,需要探索基于RL的因果推断技术。另一方面,客户成长初期目前无法获得足够的服务与帮助,结合上广告投放本身有较高学习门槛,所以现在亟需依赖LLM技术,实现智能销售的愿景——包括智能客服、智能销售、智能投手三个阶段,最终达到全智能化的托管式服务。 课题挑战: 相比抖音C端流量数据,广告客户数据相对波动较大,观测周期长,有更多的不确定性; 大语言模型在广告领域的能力依然不足,具体表现在领域知识理解不足,大量专业工具(百量级)的使用效率不高,业务回复的可解释性不够强。为了达到人工销售的水平,需要探索RL、探索reward system、探索deep research的实现、探索业务向Benchmark的范式等等; 相比传统客服的问答式工作,还需要探索LLM在主动服务方向的开放命题。