logo of kuaishou

快手金融大模型算法专家-【电商】

社招全职5年以上D13445地点:北京状态:招聘

任职要求


1、计算机科学、统计学、金融工程等相关专业优先,5 年及以上大规模深度学习或风险模型研发经验;
2、主导过亿级样本、多源异构数据的模型建设,对 Transformer/Hyena/Performer 等长序列架构具备源码级理解;
3、精通多模态对齐、RAG、RLHF 及量化与蒸馏等 LLM 技术,熟练使用 PyTorch 或 JAX 并掌握 DeepSpeed/FSDP 等分布式训练框架;
4、加分项:顶会论文或核心开源项目贡献者、GPU/芯片资源优化经验、在多个国家或地区成功落地信贷模型的经历。

工作职责


【团队与岗位介绍】
1、本岗位将主导 金融行为序列大模型与多模态大语言模型在信贷业务中的应用;
2、 应用场景覆盖贷前、贷中、贷后全流程:包括准入评分、授信定价、欺诈识别、风险预警、智能催收等关键环节。

【岗位职责】
1、设计并实现金融行为序列大模型与多模态 LLM 的整体技术方案,形成可持续迭代的算法资产,在信贷风控业务场景落地;
2、建立统一的数据标准与特征工程体系,确保模型在高噪声、弱标签环境下的稳健性与可解释性。
包括英文材料
深度学习+
Transformer+
RAG+
大模型+
PyTorch+
DeepSpeed+
相关职位

logo of kuaishou
社招5年以上D13445

【团队与岗位介绍】 1、本岗位将主导 金融行为序列大模型与多模态大语言模型在信贷业务中的应用; 2、 应用场景覆盖贷前、贷中、贷后全流程:包括准入评分、授信定价、欺诈识别、风险预警、智能催收等关键环节。 【岗位职责】 1、设计并实现金融行为序列大模型与多模态 LLM 的整体技术方案,形成可持续迭代的算法资产,在信贷风控业务场景落地; 2、建立统一的数据标准与特征工程体系,确保模型在高噪声、弱标签环境下的稳健性与可解释性。

更新于 2025-07-03
logo of hello
社招技术

研发哈啰出行大模型应用落地,支持千万DAU的Agent(包括主动性交易撮合Agent、生成式搜推广告大模型、智能客服、出行机器人等)

更新于 2025-07-03
logo of bytedance
校招A167274A

团队介绍:依托抖音集团的科技能力和产品,我们为抖音电商、生活服务、直播等场景提供金融服务,为抖音用户提供更好的支付、消费金融、保险等金融服务。科技创新,普惠大众。 大模型&NLP算法团队,支持财经各业务场景的大模型/NLP算法,负责包括智能客服、智能助理、智能外呼、客户体验体系建设等财经NLP及对话应用场景的建设。通过财经领域知识结合生成式大模型、检索增强生成(RAG)、文本理解等技术。建设财经领域内行业领先的智能对话能力和自然语言理解能力,提升财经用户体验和保险/消金等场景智能售前/售后的转化率和满意度。 课题背景: 尽管现有的预训练语言模型在通用领域的生成任务中表现出色,但由于训练数据专业性不足和训练任务缺乏针对性,其在财经领域的应用仍存在明显短板。这主要体现在难以准确理解财经领域特有的业务知识,以及生成内容无法符合该领域特定的业务规则等方面。例如,在财经对话场景中,模型由于缺乏业务背景知识,可能会误解用户意图,生成违反业务规则或偏离市场实际情况的回答,甚至生成与财经业务不符的内容,从而导致生成结果的可信度不足。因此,如何通过领域自适应学习、领域动态知识注入以及领域可解释性生成等技术,提升模型对财经领域的理解和生成能力,已成为一个亟待解决的关键难题。 课题挑战: 目前的预训练语言模型主要基于通用领域的大规模文本数据进行训练,但在面对垂直领域的挑战时,尤其是依赖精确市场分析和特有业务背景知识的财经领域场景,仍然面临诸多困难。这些模型在理解复杂领域文本、整合专业知识、完成特定任务推理以及生成可靠的领域文本方面,存在明显局限性。 首先,当前的大规模预训练语言模型在财经领域的业务知识理解和整合方面仍存在明显不足。即便是像 GPT-4 等当前最先进的模型,也未能深入学习和掌握财经领域的业务背景、知识体系以及行业规范,导致其在财经对话场景中难以精准把握用户意图,无法准确理解复杂的业务逻辑和上下文关联关系。此外,这些模型缺少领域专家知识的监督机制,生成的文本容易出现业务逻辑错误和事实偏差,甚至违反财经领域特定的业务规则。因此,如何构造针对财经领域的自适应训练任务,增强模型在财经领域的知识理解能力,已成为亟待解决的关键问题。 其次,财经领域高度依赖动态更新的市场信息,而当前的大规模预训练语言模型难以快速适配动态更新的领域知识。由于预训练阶段知识的滞后性,这些模型无法在对话中提供对用户有价值的实时分析与建议。因此,如何改进领域知识注入和动态知识学习的训练方法,提升模型在财经对话场景下快速适应新知识的能力,是大模型快速迁移垂直领域的急迫需求。 最后,现有生成式人工智能在财经对话场景中的透明性和可解释性方面仍显不足,用户难以清晰了解模型生成过程及其依据,导致生成结果特别是在涉及市场预测或投资策略等高风险场景时的可信度受到质疑。因此,如何提升文本生成的透明性和可解释性,提升文本生成可信性,是大模型正式投身生产应用的关键卡点。

更新于 2025-05-26
logo of bytedance
实习A146885

团队介绍:依托抖音集团的科技能力和产品,我们为抖音电商、生活服务、直播等场景提供金融服务,为抖音用户提供更好的支付、消费金融、保险等金融服务。科技创新,普惠大众。 大模型&NLP算法团队,支持财经各业务场景的大模型/NLP算法,负责包括智能客服、智能助理、智能外呼、客户体验体系建设等财经NLP及对话应用场景的建设。通过财经领域知识结合生成式大模型、检索增强生成(RAG)、文本理解等技术。建设财经领域内行业领先的智能对话能力和自然语言理解能力,提升财经用户体验和保险/消金等场景智能售前/售后的转化率和满意度。 课题背景: 尽管现有的预训练语言模型在通用领域的生成任务中表现出色,但由于训练数据专业性不足和训练任务缺乏针对性,其在财经领域的应用仍存在明显短板。这主要体现在难以准确理解财经领域特有的业务知识,以及生成内容无法符合该领域特定的业务规则等方面。例如,在财经对话场景中,模型由于缺乏业务背景知识,可能会误解用户意图,生成违反业务规则或偏离市场实际情况的回答,甚至生成与财经业务不符的内容,从而导致生成结果的可信度不足。因此,如何通过领域自适应学习、领域动态知识注入以及领域可解释性生成等技术,提升模型对财经领域的理解和生成能力,已成为一个亟待解决的关键难题。 课题挑战: 目前的预训练语言模型主要基于通用领域的大规模文本数据进行训练,但在面对垂直领域的挑战时,尤其是依赖精确市场分析和特有业务背景知识的财经领域场景,仍然面临诸多困难。这些模型在理解复杂领域文本、整合专业知识、完成特定任务推理以及生成可靠的领域文本方面,存在明显局限性。 首先,当前的大规模预训练语言模型在财经领域的业务知识理解和整合方面仍存在明显不足。即便是像 GPT-4 等当前最先进的模型,也未能深入学习和掌握财经领域的业务背景、知识体系以及行业规范,导致其在财经对话场景中难以精准把握用户意图,无法准确理解复杂的业务逻辑和上下文关联关系。此外,这些模型缺少领域专家知识的监督机制,生成的文本容易出现业务逻辑错误和事实偏差,甚至违反财经领域特定的业务规则。因此,如何构造针对财经领域的自适应训练任务,增强模型在财经领域的知识理解能力,已成为亟待解决的关键问题。 其次,财经领域高度依赖动态更新的市场信息,而当前的大规模预训练语言模型难以快速适配动态更新的领域知识。由于预训练阶段知识的滞后性,这些模型无法在对话中提供对用户有价值的实时分析与建议。因此,如何改进领域知识注入和动态知识学习的训练方法,提升模型在财经对话场景下快速适应新知识的能力,是大模型快速迁移垂直领域的急迫需求。 最后,现有生成式人工智能在财经对话场景中的透明性和可解释性方面仍显不足,用户难以清晰了解模型生成过程及其依据,导致生成结果特别是在涉及市场预测或投资策略等高风险场景时的可信度受到质疑。因此,如何提升文本生成的透明性和可解释性,提升文本生成可信性,是大模型正式投身生产应用的关键卡点。

更新于 2025-03-03