快手【留用实习】大模型推理/训练引擎研发工程师
实习兼职J1014地点:北京状态:招聘
任职要求
1、本科以上学历,电子、自动化、计算机类专业优先; 2、了解分布式系统或高性能计算相关知识,具备良好的系统编程、数据结构、算法基础、系统设计能力; 3、熟悉Linux开发环境、熟练使用Pytorch训练框架,掌握 C++/Python编程语言; 4、具有良好的团队合作精神和沟通能力。热爱钻研技术,善于分析、解决工程问题,能够对算法和底层的协同优化起到核心桥梁作用。 加分项: 1、熟悉tensorflow、pytorch、TensorRT, FasterTransformer等主流推理和训练框架,并有相关优化经验者优先; 2、具备大模型训练、分布式训练、微调经验、HPC基础知识,了解集合通信和CUDA编程,熟悉triton、cutlass、有算子库开发经验者优先; 3、在国际顶级会议/期刊上有相关论文发表优先; 4、有机器学习平台开发和深度学习框架开发等领域开发经验优先。
工作职责
1、参与快手大规模深度学习推理引擎、大模型训练解决方案的研发与优化,包括大模型推理、模型训练框架、微调平台等; 2、参与底层算子的优化、通过优化访存pattern、计算提升推理性能,与算法部门合作,为公司大模型定制训练方案,探索RLHF、MoE、多模态、longcontext等前沿方向,提升训练性能; 3、优化推理框架上层调度策略,通过机内、机间的计算任务调度和通讯优化提升引擎性能;优化现有大语言模型相关工具和平台,提高模型训练、维护效率,降低成本,提升训练服务稳定性。
包括英文材料
学历+
分布式系统+
https://www.distributedsystemscourse.com/
The home page of a free online class in distributed systems.
https://www.youtube.com/watch?v=7VbL89mKK3M&list=PLOE1GTZ5ouRPbpTnrZ3Wqjamfwn_Q5Y9A
数据结构+
https://www.youtube.com/watch?v=8hly31xKli0
In this course you will learn about algorithms and data structures, two of the fundamental topics in computer science.
https://www.youtube.com/watch?v=B31LgI4Y4DQ
Learn about data structures in this comprehensive course. We will be implementing these data structures in C or C++.
https://www.youtube.com/watch?v=CBYHwZcbD-s
Data Structures and Algorithms full course tutorial java
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
系统设计+
https://roadmap.sh/system-design
Everything you need to know about designing large scale systems.
https://www.youtube.com/watch?v=F2FmTdLtb_4
This complete system design tutorial covers scalability, reliability, data handling, and high-level architecture with clear explanations, real-world examples, and practical strategies.
Linux+
https://ryanstutorials.net/linuxtutorial/
Ok, so you want to learn how to use the Bash command line interface (terminal) on Unix/Linux.
https://ubuntu.com/tutorials/command-line-for-beginners
The Linux command line is a text interface to your computer.
https://www.youtube.com/watch?v=6WatcfENsOU
In this Linux crash course, you will learn the fundamental skills and tools you need to become a proficient Linux system administrator.
https://www.youtube.com/watch?v=v392lEyM29A
Never fear the command line again, make it fear you.
https://www.youtube.com/watch?v=ZtqBQ68cfJc
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
TensorRT+
https://docs.nvidia.com/deeplearning/tensorrt/latest/getting-started/quick-start-guide.html
This TensorRT Quick Start Guide is a starting point for developers who want to try out the TensorRT SDK; specifically, it demonstrates how to quickly construct an application to run inference on a TensorRT engine.
大模型+
https://www.youtube.com/watch?v=xZDB1naRUlk
You will build projects with LLMs that will enable you to create dynamic interfaces, interact with vast amounts of text data, and even empower LLMs with the capability to browse the internet for research papers.
https://www.youtube.com/watch?v=zjkBMFhNj_g
HPC+
https://www.ibm.com/think/topics/hpc
HPC is a technology that uses clusters of powerful processors that work in parallel to process massive, multidimensional data sets and solve complex problems at extremely high speeds.
CUDA+
https://developer.nvidia.com/blog/even-easier-introduction-cuda/
This post is a super simple introduction to CUDA, the popular parallel computing platform and programming model from NVIDIA.
https://www.youtube.com/watch?v=86FAWCzIe_4
Lean how to program with Nvidia CUDA and leverage GPUs for high-performance computing and deep learning.
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
相关职位
实习J1020
1、参与研发业界领先的深度学习编译技术,落地计算优化、显存优化及分布式优化技术到训练框架和推理框架中,赋能深度学习算法落地; 2、XLA 相关编译优化功能开发; 3、结合pytorch/tensorflow等上下游框架适配与集成; 4、异构大模型推理引擎优化,负责调研NV 上各种推理引擎的优化技术,并支持大模型推理各种优化技术在异构硬件上的落地。
更新于 2025-05-14
实习J1020
1、负责依据不同业务场景的特点和新硬件特性,结合系统软硬件栈的整体调优,提出并实施性能优化方案; 2、负责持续跟踪业内软硬件相关领域的技术发展趋势,结合不同业务场景未来需求,开展方案预研以及推广应用工作; 具体包括以下三种场景或者三种之一: 1)以容器云、大数据计算平台为例的通用计算平台场景; 2)AI计算相关场景,例如:大模型训练场景,AIGC、NLP、推荐等常规推理场景; 3)结构化以及非结构化数据存储场景。
更新于 2025-03-04
实习J1020
1、负责依据不同业务场景的特点和新硬件特性,结合系统软硬件栈的整体调优,提出并实施性能优化方案; 2、负责持续跟踪业内软硬件相关领域的技术发展趋势,结合不同业务场景未来需求,开展方案预研以及推广应用工作。 具体包括以下两种场景或者两种之一: 1)AI计算相关场景,例如:大模型训练场景,AIGC、NLP、推荐等常规推理场景; 2)以容器云、大数据计算平台为例的通用计算平台场景。
更新于 2025-03-11