快手【留用实习】深度学习训练平台研发工程师
实习兼职J1020地点:北京状态:招聘
任职要求
1、硕士及以上学历,专业不限,计算机相关专业优先; 2、掌握Python/C++编程语言,了解RPC框架、集合通信和CUDA编程更佳; 3、了解AI infra 整体技术栈需求,有训练框架或推理框架实战经验、熟悉Tensorflow 或 PyTorch 的使用、有二次开发能力或开源社区贡献经历更佳; 4、具备分布式训练或HPC基础知识,有机器学习平台开发和深度学习框架开发等领域开发经验。
工作职责
1、研发业界领先的推广搜深度学习训练框架,提供面向大规模稀疏数据的解决方案,服务于快手内部所有推荐类业务场景,包括 短视频、海外、广告、电商、直播等; 2、多样的业务形态和庞大的业务规模使得框架的开发与优化极富挑战性:万量级 GPU 卡,千亿量级样本,万亿量级参数,PB 量级训练数据。
包括英文材料
学历+
Python+
https://liaoxuefeng.com/books/python/introduction/index.html
中文,免费,零起点,完整示例,基于最新的Python 3版本。
https://www.learnpython.org/
a free interactive Python tutorial for people who want to learn Python, fast.
https://www.youtube.com/watch?v=K5KVEU3aaeQ
Master Python from scratch 🚀 No fluff—just clear, practical coding skills to kickstart your journey!
https://www.youtube.com/watch?v=rfscVS0vtbw
This course will give you a full introduction into all of the core concepts in python.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
RPC+
https://javaguide.cn/distributed-system/rpc/rpc-intro.html
为什么要 RPC ? 因为,两个不同的服务器上的服务提供的方法不在一个内存空间,所以,需要通过网络编程才能传递方法调用所需要的参数。并且,方法调用的结果也需要通过网络编程来接收。
https://www.youtube.com/watch?v=S2osKiqQG9s
This video is part of an 8-lecture series on distributed systems, given as part of the undergraduate computer science course at the University of Cambridge.
CUDA+
https://developer.nvidia.com/blog/even-easier-introduction-cuda/
This post is a super simple introduction to CUDA, the popular parallel computing platform and programming model from NVIDIA.
https://www.youtube.com/watch?v=86FAWCzIe_4
Lean how to program with Nvidia CUDA and leverage GPUs for high-performance computing and deep learning.
TensorFlow+
https://www.youtube.com/watch?v=tpCFfeUEGs8
Ready to learn the fundamentals of TensorFlow and deep learning with Python? Well, you’ve come to the right place.
https://www.youtube.com/watch?v=ZUKz4125WNI
This part continues right where part one left off so get that Google Colab window open and get ready to write plenty more TensorFlow code.
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
HPC+
https://www.ibm.com/think/topics/hpc
HPC is a technology that uses clusters of powerful processors that work in parallel to process massive, multidimensional data sets and solve complex problems at extremely high speeds.
机器学习+
https://www.youtube.com/watch?v=0oyDqO8PjIg
Learn about machine learning and AI with this comprehensive 11-hour course from @LunarTech_ai.
https://www.youtube.com/watch?v=i_LwzRVP7bg
Learn Machine Learning in a way that is accessible to absolute beginners.
https://www.youtube.com/watch?v=NWONeJKn6kc
Learn the theory and practical application of machine learning concepts in this comprehensive course for beginners.
https://www.youtube.com/watch?v=PcbuKRNtCUc
Learn about all the most important concepts and terms related to machine learning and AI.
深度学习+
https://d2l.ai/
Interactive deep learning book with code, math, and discussions.
相关职位
实习J1020
1、负责快手一站式机器学习平台的设计研发与迭代改进,为业务提供稳定易用、高性能、高性价比的AI中台解决方案; 2、业内机器学习系统与平台前沿技术进展跟进与调研、落地。
更新于 2025-05-19
实习J1014
1、参与快手大规模深度学习推理引擎、大模型训练解决方案的研发与优化,包括大模型推理、模型训练框架、微调平台等; 2、参与底层算子的优化、通过优化访存pattern、计算提升推理性能,与算法部门合作,为公司大模型定制训练方案,探索RLHF、MoE、多模态、longcontext等前沿方向,提升训练性能; 3、优化推理框架上层调度策略,通过机内、机间的计算任务调度和通讯优化提升引擎性能;优化现有大语言模型相关工具和平台,提高模型训练、维护效率,降低成本,提升训练服务稳定性。
更新于 2025-05-23
实习J1020
1.参与AI与GPU相关项目的性能优化与研发,通过利用CPU、GPU的并行计算优化、架构优化、量化优化和异构调度等高性能优化技术,研发行业领先的高性能异构AI优化技术与编译优化技术; 2.针对搜索、推荐、广告、音视频以及大模型场景,优化模型训练和推理场景的性能; 3.与公司各算法部门深度合作,对重点项目进行算法与系统的联合优化。
更新于 2025-03-31