快手【快Star-X】多模态训推引擎研发工程师
校招全职J1020地点:上海 | 北京状态:招聘
任职要求
1、本科以上学历,电子、自动化、计算机类专业优先; 2、了解分布式系统或高性能计算相关知识,具备良好的系统编程、数据结构、算法基础、系统设计能力; 3、熟悉Linux开发环境、熟练使用Pytorch训练框架,掌握 C++/Python编程语言; 4、具有良好的团队合作精神和沟通能力。热爱钻研技术,善于分析、解决工程问题,能够对算法和底层的协同优化起到核心桥梁作用。 加分项: 1、熟悉te…
登录查看完整任职要求
微信扫码,1秒登录
工作职责
1、基础设施与模型融合研究 :紧密关注新一代基础设施的迭代,如高性能的新一代网卡、超节点服务器以及先进的集群拓扑结构等,结合多模态任务下多模型(涵盖 visual tokenizer、diffusion、LLM 等)长 pipeline 特点,探索更先进、高效的多模态模型架构以及训推解决方案; 2、分布式系统优化 :运用分布式系统迭代、系统算法 codesign 等手段,针对模型规模、集群规模、context length 持续 scaling up 过程中出现的诸多挑战展开深入研究。具体包括但不限于解决训练过程中的 MFU 与稳定性问题,优化推理环节的时延与吞吐,以及应对超长序列带来的训推显存压力等难题; 3、卓越系统打造 :通过持续的创新与优化实践,致力于打造业界卓越的分布式训推系统,推动相关技术在实际应用场景中的高效落地,提升整体系统性能与竞争力,为 kling 等核心模型发展提供坚实支撑。
包括英文材料
学历+
分布式系统+
https://www.distributedsystemscourse.com/
The home page of a free online class in distributed systems.
https://www.youtube.com/watch?v=7VbL89mKK3M&list=PLOE1GTZ5ouRPbpTnrZ3Wqjamfwn_Q5Y9A
数据结构+
https://www.youtube.com/watch?v=8hly31xKli0
In this course you will learn about algorithms and data structures, two of the fundamental topics in computer science.
https://www.youtube.com/watch?v=B31LgI4Y4DQ
Learn about data structures in this comprehensive course. We will be implementing these data structures in C or C++.
https://www.youtube.com/watch?v=CBYHwZcbD-s
Data Structures and Algorithms full course tutorial java
算法+
https://roadmap.sh/datastructures-and-algorithms
Step by step guide to learn Data Structures and Algorithms in 2025
https://www.hellointerview.com/learn/code
A visual guide to the most important patterns and approaches for the coding interview.
https://www.w3schools.com/dsa/
系统设计+
https://roadmap.sh/system-design
Everything you need to know about designing large scale systems.
https://www.youtube.com/watch?v=F2FmTdLtb_4
This complete system design tutorial covers scalability, reliability, data handling, and high-level architecture with clear explanations, real-world examples, and practical strategies.
Linux+
https://ryanstutorials.net/linuxtutorial/
Ok, so you want to learn how to use the Bash command line interface (terminal) on Unix/Linux.
https://ubuntu.com/tutorials/command-line-for-beginners
The Linux command line is a text interface to your computer.
https://www.youtube.com/watch?v=6WatcfENsOU
In this Linux crash course, you will learn the fundamental skills and tools you need to become a proficient Linux system administrator.
https://www.youtube.com/watch?v=v392lEyM29A
Never fear the command line again, make it fear you.
https://www.youtube.com/watch?v=ZtqBQ68cfJc
PyTorch+
https://datawhalechina.github.io/thorough-pytorch/
PyTorch是利用深度学习进行数据科学研究的重要工具,在灵活性、可读性和性能上都具备相当的优势,近年来已成为学术界实现深度学习算法最常用的框架。
https://www.youtube.com/watch?v=V_xro1bcAuA
Learn PyTorch for deep learning in this comprehensive course for beginners. PyTorch is a machine learning framework written in Python.
C+++
https://www.learncpp.com/
LearnCpp.com is a free website devoted to teaching you how to program in modern C++.
https://www.youtube.com/watch?v=ZzaPdXTrSb8
还有更多 •••
相关职位
校招J1007
深度优化多模态大模型的Caption、表征、改写能力,打造业界第一梯队的多模态大模型,在AIGC技术指标上超过GPT-4o、Gemini Pro等闭源模型,落地于快手各业务线。
更新于 2025-07-16北京
校招J1007
1、diffusion步数压缩: 探索 diffusion 模型的 one-step / few-steps 的无损蒸馏算法, 跟进学术界最前沿的 few-steps diffusion 算法, 包括但不限于 consistency modeling, shortcut, score distillation等方案, 打造实时化的极致高效可灵/可图 大模型; 2、高效attention设计: 探索新一代注意力实现机制, 包括但不限于: sparse/quant-attention, linear-attention, mamba等, 打破 attention 计算平方复杂度限制, 解决 长序列视频/图像 引起的推理挑战, 推进 可灵/可图 大模型的长序列场景下的推理极限; 3、强化反馈优化: 应用 DPO/GRPO/PPO 等强化学习的手段调优模型效果, 在模型压缩的前置条件下探索强化学习与压缩算法的化学反应, 推动 可灵/可图 大模型的效果-效率帕雷托前沿新SOTA。
更新于 2025-06-27上海|北京
校招J1020
1、参与多模态模型、视频生成模型等大模型的分离式推理编排、异构算力匹配、全球化计算调度; 2、参与大规模异构算力集群的算力资源池化、弹性资源混部、潮汐资源调度; 3、基于HBO、强化学习等优化算法,持续优化工业级多模态视频生成、多模态内容理解系统的耗时体验与算力消耗。
更新于 2025-06-27北京